YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Model for Predicting Permanent Strain of Granular Materials in Embankment Subjected to Low Cyclic Loadings

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 009
    Author:
    Wen-Bo Chen
    ,
    Wei-Qiang Feng
    ,
    Jian-Hua Yin
    ,
    Jin-Miao Chen
    ,
    Lalit Borana
    ,
    Ren-Peng Chen
    DOI: 10.1061/(ASCE)GT.1943-5606.0002334
    Publisher: ASCE
    Abstract: Estimating the permanent strain of granular materials in embankments subjected to cyclic loading is a major challenge for transport engineering projects. In practice, the development of permanent strain can be divided into two periods, postcompaction and secondary cyclic compression. In this study, the existing literature on prediction of permanent strain is reviewed in detail, and the key advantages and limitations of each model are presented and discussed. Based on the gaps identified in the existing literature, a new model for predicting the permanent strain of granular materials under low cyclic loadings is proposed. This model defines two new terms, “representative cycle number” and “reference strain line,” to distinguish the postcompaction and secondary cyclic compression periods accurately. Specifically, the new model correlates the stress states, first with the accumulated strain at the end of the postcompaction period, and then with the strain rate in the secondary cyclic compression period, with good accuracy. This model eliminates the requirement for static compression tests, which are normally needed for the existing models. The new model also avoids the determination of resilient modulus, which is not a competent definitive parameter for evaluating the performance of granular materials. Further, the new model is validated by predicting the permanent strain development of two types of granular materials that are adopted in pavement subgrade and railway subgrade, respectively, in cyclic triaxial tests. The new model is applied in a trial for predicting the long-term settlement of a full-scale physical model of railway embankment under cyclic loading. The results indicate that the new model can effectively capture and accurately predict the permanent strain of testing materials under various stress states and testing conditions. It is also proved that the practical value of the new model is promising. The effects of moisture content, particle size distribution, and compaction degree were not considered, and further studies are recommended to investigate these factors.
    • Download: (643.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Model for Predicting Permanent Strain of Granular Materials in Embankment Subjected to Low Cyclic Loadings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268937
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorWen-Bo Chen
    contributor authorWei-Qiang Feng
    contributor authorJian-Hua Yin
    contributor authorJin-Miao Chen
    contributor authorLalit Borana
    contributor authorRen-Peng Chen
    date accessioned2022-01-30T21:50:41Z
    date available2022-01-30T21:50:41Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29GT.1943-5606.0002334.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268937
    description abstractEstimating the permanent strain of granular materials in embankments subjected to cyclic loading is a major challenge for transport engineering projects. In practice, the development of permanent strain can be divided into two periods, postcompaction and secondary cyclic compression. In this study, the existing literature on prediction of permanent strain is reviewed in detail, and the key advantages and limitations of each model are presented and discussed. Based on the gaps identified in the existing literature, a new model for predicting the permanent strain of granular materials under low cyclic loadings is proposed. This model defines two new terms, “representative cycle number” and “reference strain line,” to distinguish the postcompaction and secondary cyclic compression periods accurately. Specifically, the new model correlates the stress states, first with the accumulated strain at the end of the postcompaction period, and then with the strain rate in the secondary cyclic compression period, with good accuracy. This model eliminates the requirement for static compression tests, which are normally needed for the existing models. The new model also avoids the determination of resilient modulus, which is not a competent definitive parameter for evaluating the performance of granular materials. Further, the new model is validated by predicting the permanent strain development of two types of granular materials that are adopted in pavement subgrade and railway subgrade, respectively, in cyclic triaxial tests. The new model is applied in a trial for predicting the long-term settlement of a full-scale physical model of railway embankment under cyclic loading. The results indicate that the new model can effectively capture and accurately predict the permanent strain of testing materials under various stress states and testing conditions. It is also proved that the practical value of the new model is promising. The effects of moisture content, particle size distribution, and compaction degree were not considered, and further studies are recommended to investigate these factors.
    publisherASCE
    titleNew Model for Predicting Permanent Strain of Granular Materials in Embankment Subjected to Low Cyclic Loadings
    typeJournal Paper
    journal volume146
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002334
    page13
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian