YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    End-Bearing Capacity of Embedded Piles with Inclined-Base Plate: Laboratory Model Tests

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 008
    Author:
    Kyungsoo Han
    ,
    Mi Jeong Seo
    ,
    Won-Taek Hong
    ,
    Jong-Sub Lee
    DOI: 10.1061/(ASCE)GT.1943-5606.0002304
    Publisher: ASCE
    Abstract: The objective of this study is to investigate the effects of an inclined base plate on the end bearing capacity of embedded piles and soil behavior below a pile base according to the vertical stress and inclination angle of the base plate. Two types of model piles were prepared: a conventional pile with a flat base plate with a diameter of 50 mm and piles with an inclined base plate with a diameter of 56 mm. Load tests were conducted using model piles with a diameter of 50 mm incorporated with load cells and bender elements in a calibration chamber. The end bearing capacity, unit end bearing capacity, and shear wave velocity increase for all model piles with an increase in the vertical stress and in the inclination angle. The increment in the end bearing capacity may result from the increased projected area, the increased contact area between the inclined base plate and soil, and increased horizontal effective stress. The unit end bearing capacity also demonstrates a good relationship with the shear wave velocity, which is a function of the horizontal effective stress below the pile base. This study suggests that piles with inclined base plates may be effectively used in the embedded pile method to improve the end bearing capacity.
    • Download: (1.370Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      End-Bearing Capacity of Embedded Piles with Inclined-Base Plate: Laboratory Model Tests

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268912
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorKyungsoo Han
    contributor authorMi Jeong Seo
    contributor authorWon-Taek Hong
    contributor authorJong-Sub Lee
    date accessioned2022-01-30T21:49:46Z
    date available2022-01-30T21:49:46Z
    date issued8/1/2020 12:00:00 AM
    identifier other%28ASCE%29GT.1943-5606.0002304.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268912
    description abstractThe objective of this study is to investigate the effects of an inclined base plate on the end bearing capacity of embedded piles and soil behavior below a pile base according to the vertical stress and inclination angle of the base plate. Two types of model piles were prepared: a conventional pile with a flat base plate with a diameter of 50 mm and piles with an inclined base plate with a diameter of 56 mm. Load tests were conducted using model piles with a diameter of 50 mm incorporated with load cells and bender elements in a calibration chamber. The end bearing capacity, unit end bearing capacity, and shear wave velocity increase for all model piles with an increase in the vertical stress and in the inclination angle. The increment in the end bearing capacity may result from the increased projected area, the increased contact area between the inclined base plate and soil, and increased horizontal effective stress. The unit end bearing capacity also demonstrates a good relationship with the shear wave velocity, which is a function of the horizontal effective stress below the pile base. This study suggests that piles with inclined base plates may be effectively used in the embedded pile method to improve the end bearing capacity.
    publisherASCE
    titleEnd-Bearing Capacity of Embedded Piles with Inclined-Base Plate: Laboratory Model Tests
    typeJournal Paper
    journal volume146
    journal issue8
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002304
    page16
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian