YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Evaluation of Sand Particle Fracture Using Discrete-Element Method and Synchrotron Microcomputed Tomography Images

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 007
    Author:
    Zaher A. Jarrar
    ,
    Khalid A. Alshibli
    ,
    Riyadh I. Al-Raoush
    DOI: 10.1061/(ASCE)GT.1943-5606.0002281
    Publisher: ASCE
    Abstract: Recent research showed that fracture of sand particles plays a significant role in determining the plastic bulk volumetric changes of granular materials under different loading conditions. One of the major tools used to better understand the influence of particle fracture on the behavior of granular materials is discrete-element modeling (DEM). This paper employed the bonded block model (BBM) to simulate the fracture behavior of sand. Each sand particle is modeled as an agglomerate of rigid blocks bonded at their contacts using the linear-parallel contact model, which can transmit both moment and force. DEM simulated particles closely matched the actual three-dimensional (3D) shape of sand particles acquired using high-resolution 3D synchrotron microcomputed tomography (SMT). Results from unconfined one-dimensional (1D) compression of a single synthetic silica cube were used to calibrate the model parameters. Particle fracture was investigated for specimens composed of three sand particles that were loaded under confined 1D compression. Breakage energy measured from DEM models matched well with that measured experimentally. The paper studied the effects of contact loading condition and particle interaction on the fracture mode of particles using BBM that can closely capture the 3D shape of real sand particles.
    • Download: (1.236Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Evaluation of Sand Particle Fracture Using Discrete-Element Method and Synchrotron Microcomputed Tomography Images

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268894
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorZaher A. Jarrar
    contributor authorKhalid A. Alshibli
    contributor authorRiyadh I. Al-Raoush
    date accessioned2022-01-30T21:49:06Z
    date available2022-01-30T21:49:06Z
    date issued7/1/2020 12:00:00 AM
    identifier other%28ASCE%29GT.1943-5606.0002281.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268894
    description abstractRecent research showed that fracture of sand particles plays a significant role in determining the plastic bulk volumetric changes of granular materials under different loading conditions. One of the major tools used to better understand the influence of particle fracture on the behavior of granular materials is discrete-element modeling (DEM). This paper employed the bonded block model (BBM) to simulate the fracture behavior of sand. Each sand particle is modeled as an agglomerate of rigid blocks bonded at their contacts using the linear-parallel contact model, which can transmit both moment and force. DEM simulated particles closely matched the actual three-dimensional (3D) shape of sand particles acquired using high-resolution 3D synchrotron microcomputed tomography (SMT). Results from unconfined one-dimensional (1D) compression of a single synthetic silica cube were used to calibrate the model parameters. Particle fracture was investigated for specimens composed of three sand particles that were loaded under confined 1D compression. Breakage energy measured from DEM models matched well with that measured experimentally. The paper studied the effects of contact loading condition and particle interaction on the fracture mode of particles using BBM that can closely capture the 3D shape of real sand particles.
    publisherASCE
    titleThree-Dimensional Evaluation of Sand Particle Fracture Using Discrete-Element Method and Synchrotron Microcomputed Tomography Images
    typeJournal Paper
    journal volume146
    journal issue7
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002281
    page10
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian