YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Chemically Induced Calcium Carbonate Precipitation for Improving Strength of Sand

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 009
    Author:
    Sung-Sik Park
    ,
    Trung-Tri Le
    ,
    Zhenzhen Nong
    ,
    Hong-Duk Moon
    ,
    Dong-Eun Lee
    DOI: 10.1061/(ASCE)MT.1943-5533.0003318
    Publisher: ASCE
    Abstract: Chemically induced calcium carbonate precipitation (CCP) using calcium hydroxide (CH) and carbon dioxide (CO2) was employed to clean sand for improving its strength. Joomunjin sand was mixed with 2% CH and 10% water, and then cured in a CO2 chamber under 100 or 200 kPa for 2 h. The treatments were repeated 1, 5, and 10 times. At the last treatment cycle, the treated sand was compacted into a mold for testing. A series of unconfined compression and direct shear tests were conducted on the treated sand to evaluate the effects of the CCP on the strength of the clean sand. Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) analysis were performed to evaluate the CCP and microstructure of the treated sand. The experimental results indicated that the effect of change in the CO2 chamber pressure on the calcium carbonate content (CCC) was insignificant due to the low pressures applied. As the number of treatments increased from 1 to 10, the CCC increased from 2% to 23%, resulting in increases of the unconfined compressive strength (UCS), and friction angle of treated sand. The efficiency of converting CH to CaCO3 reached 87% after 10 cycles. The UCS increased from 51 to 364 kPa as the number of treatments increased from 1 to 10. The friction angle and cohesion of clean sand also increased from 32° and 0 kPa to 49° and 53 kPa, respectively.
    • Download: (3.852Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Chemically Induced Calcium Carbonate Precipitation for Improving Strength of Sand

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267249
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorSung-Sik Park
    contributor authorTrung-Tri Le
    contributor authorZhenzhen Nong
    contributor authorHong-Duk Moon
    contributor authorDong-Eun Lee
    date accessioned2022-01-30T20:51:40Z
    date available2022-01-30T20:51:40Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29MT.1943-5533.0003318.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267249
    description abstractChemically induced calcium carbonate precipitation (CCP) using calcium hydroxide (CH) and carbon dioxide (CO2) was employed to clean sand for improving its strength. Joomunjin sand was mixed with 2% CH and 10% water, and then cured in a CO2 chamber under 100 or 200 kPa for 2 h. The treatments were repeated 1, 5, and 10 times. At the last treatment cycle, the treated sand was compacted into a mold for testing. A series of unconfined compression and direct shear tests were conducted on the treated sand to evaluate the effects of the CCP on the strength of the clean sand. Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) analysis were performed to evaluate the CCP and microstructure of the treated sand. The experimental results indicated that the effect of change in the CO2 chamber pressure on the calcium carbonate content (CCC) was insignificant due to the low pressures applied. As the number of treatments increased from 1 to 10, the CCC increased from 2% to 23%, resulting in increases of the unconfined compressive strength (UCS), and friction angle of treated sand. The efficiency of converting CH to CaCO3 reached 87% after 10 cycles. The UCS increased from 51 to 364 kPa as the number of treatments increased from 1 to 10. The friction angle and cohesion of clean sand also increased from 32° and 0 kPa to 49° and 53 kPa, respectively.
    publisherASCE
    titleChemically Induced Calcium Carbonate Precipitation for Improving Strength of Sand
    typeJournal Paper
    journal volume32
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003318
    page11
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian