YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Assessment of Buildings with Prepressed Spring Self-Centering Energy Dissipation Braces

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 002
    Author:
    Longhe Xu
    ,
    Xiaowei Fan
    ,
    Zhongxian Li
    DOI: 10.1061/(ASCE)ST.1943-541X.0002493
    Publisher: ASCE
    Abstract: The seismic performance of four- and eight-story steel buildings with prepressed spring self-centering energy dissipation (PS-SCED) braces was evaluated using a proposed nonlinear mechanical model. Nonlinear dynamic analyses of conventional steel braced frames (CSBFs) were performed for comparison. Compared with CSBFs, PS-SCED braced frames experienced smaller peak interstory drift, less residual deformation, and lower peak floor acceleration. An orthogonal experiment was used to investigate the influences of three dimensionless design parameters of PS-SCED braces on structural responses. The results indicate that the variation in the ratio of friction slip force provided by the energy dissipation mechanism to the prepressed force of the self-centering mechanism had significant effects on interstory drift and residual deformation of the structure. Additionally, a change in the ratio of postactivation to preactivation stiffness of the PS-SCED brace could elicit significant changes in these two responses. An increase in contact friction between the combination disc springs resulted in a significant increase in peak floor acceleration; therefore, these contact frictions should be avoided when assembling PS-SCED braces.
    • Download: (2.325Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Assessment of Buildings with Prepressed Spring Self-Centering Energy Dissipation Braces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4266522
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorLonghe Xu
    contributor authorXiaowei Fan
    contributor authorZhongxian Li
    date accessioned2022-01-30T20:06:14Z
    date available2022-01-30T20:06:14Z
    date issued2020
    identifier other%28ASCE%29ST.1943-541X.0002493.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266522
    description abstractThe seismic performance of four- and eight-story steel buildings with prepressed spring self-centering energy dissipation (PS-SCED) braces was evaluated using a proposed nonlinear mechanical model. Nonlinear dynamic analyses of conventional steel braced frames (CSBFs) were performed for comparison. Compared with CSBFs, PS-SCED braced frames experienced smaller peak interstory drift, less residual deformation, and lower peak floor acceleration. An orthogonal experiment was used to investigate the influences of three dimensionless design parameters of PS-SCED braces on structural responses. The results indicate that the variation in the ratio of friction slip force provided by the energy dissipation mechanism to the prepressed force of the self-centering mechanism had significant effects on interstory drift and residual deformation of the structure. Additionally, a change in the ratio of postactivation to preactivation stiffness of the PS-SCED brace could elicit significant changes in these two responses. An increase in contact friction between the combination disc springs resulted in a significant increase in peak floor acceleration; therefore, these contact frictions should be avoided when assembling PS-SCED braces.
    publisherASCE
    titleSeismic Assessment of Buildings with Prepressed Spring Self-Centering Energy Dissipation Braces
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002493
    page04019190
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian