Show simple item record

contributor authorLonghe Xu
contributor authorXiaowei Fan
contributor authorZhongxian Li
date accessioned2022-01-30T20:06:14Z
date available2022-01-30T20:06:14Z
date issued2020
identifier other%28ASCE%29ST.1943-541X.0002493.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266522
description abstractThe seismic performance of four- and eight-story steel buildings with prepressed spring self-centering energy dissipation (PS-SCED) braces was evaluated using a proposed nonlinear mechanical model. Nonlinear dynamic analyses of conventional steel braced frames (CSBFs) were performed for comparison. Compared with CSBFs, PS-SCED braced frames experienced smaller peak interstory drift, less residual deformation, and lower peak floor acceleration. An orthogonal experiment was used to investigate the influences of three dimensionless design parameters of PS-SCED braces on structural responses. The results indicate that the variation in the ratio of friction slip force provided by the energy dissipation mechanism to the prepressed force of the self-centering mechanism had significant effects on interstory drift and residual deformation of the structure. Additionally, a change in the ratio of postactivation to preactivation stiffness of the PS-SCED brace could elicit significant changes in these two responses. An increase in contact friction between the combination disc springs resulted in a significant increase in peak floor acceleration; therefore, these contact frictions should be avoided when assembling PS-SCED braces.
publisherASCE
titleSeismic Assessment of Buildings with Prepressed Spring Self-Centering Energy Dissipation Braces
typeJournal Paper
journal volume146
journal issue2
journal titleJournal of Structural Engineering
identifier doi10.1061/(ASCE)ST.1943-541X.0002493
page04019190
treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record