YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Solutions for Thermomechanical Soil Structure Interaction in End-Bearing Energy Piles

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 007
    Author:
    Dunja Perić
    ,
    Aaron Edwin Cossel
    ,
    Sharmin Ara Sarna
    DOI: 10.1061/(ASCE)GT.1943-5606.0002269
    Publisher: ASCE
    Abstract: Analytical solutions for axial displacement, strain, and stress in an end-bearing energy pile subjected to a thermal load and a combined thermal and mechanical load have been derived and validated against full-scale in situ pile tests. The pile is embedded into a single layered and multilayered soil underlain by stiff bedrock. The thermoelastic constitutive law has been used to describe pile behavior, while soil–pile interface has been characterized by a linear elastic load-transfer function. In the case of thermal load, the solutions for a single-layered soil show that both the absolute minimum magnitude of axial strain and the absolute maximum magnitude of axial stress develop at the pile tip. Thus, the maximum compressive and maximum tensile stress develops at the pile tip for net heating and cooling scenarios, respectively. When subjected to combined thermal and mechanical load, the shapes of the corresponding displacement and strain and stress response curves are dominated by either the response to thermal or the response to mechanical load, depending on the ratio of the magnitudes of the temperature change and the axial force applied at the pile head. The analytical solutions provide not only a quick quantitative assessment, but also an in-depth qualitative understanding of the thermomechanical soil structure interaction in energy piles.
    • Download: (1005.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Solutions for Thermomechanical Soil Structure Interaction in End-Bearing Energy Piles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265814
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorDunja Perić
    contributor authorAaron Edwin Cossel
    contributor authorSharmin Ara Sarna
    date accessioned2022-01-30T19:41:56Z
    date available2022-01-30T19:41:56Z
    date issued2020
    identifier other%28ASCE%29GT.1943-5606.0002269.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265814
    description abstractAnalytical solutions for axial displacement, strain, and stress in an end-bearing energy pile subjected to a thermal load and a combined thermal and mechanical load have been derived and validated against full-scale in situ pile tests. The pile is embedded into a single layered and multilayered soil underlain by stiff bedrock. The thermoelastic constitutive law has been used to describe pile behavior, while soil–pile interface has been characterized by a linear elastic load-transfer function. In the case of thermal load, the solutions for a single-layered soil show that both the absolute minimum magnitude of axial strain and the absolute maximum magnitude of axial stress develop at the pile tip. Thus, the maximum compressive and maximum tensile stress develops at the pile tip for net heating and cooling scenarios, respectively. When subjected to combined thermal and mechanical load, the shapes of the corresponding displacement and strain and stress response curves are dominated by either the response to thermal or the response to mechanical load, depending on the ratio of the magnitudes of the temperature change and the axial force applied at the pile head. The analytical solutions provide not only a quick quantitative assessment, but also an in-depth qualitative understanding of the thermomechanical soil structure interaction in energy piles.
    publisherASCE
    titleAnalytical Solutions for Thermomechanical Soil Structure Interaction in End-Bearing Energy Piles
    typeJournal Paper
    journal volume146
    journal issue7
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002269
    page04020047
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian