YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Building Deformation Caused by Tunneling: Centrifuge Modeling

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 005
    Author:
    Stefan Ritter
    ,
    Giorgia Giardina
    ,
    Andrea Franza
    ,
    Matthew J. DeJong
    DOI: 10.1061/(ASCE)GT.1943-5606.0002223
    Publisher: ASCE
    Abstract: This paper investigates the deformation of buildings due to tunneling-induced soil displacements. Centrifuge model tests of three-dimensionally (3D) printed building models subject to a plane-strain tunnel excavation in dense, dry sand are discussed. The small-scale structures replicate important building characteristics including brittle material properties similar to masonry, a realistic building layout, façade openings, strip footings, and a rough soil-structure interface. Digital images were captured during the experiments, enabling image-based measurements of the building response. Results demonstrate the essential role of the building-to-tunnel position and structural details (i.e., opening percentage and building length). The onset of building cracking and cracking patterns confirms the importance of the building-to-tunnel position and structural details. The tests illustrate that an increase in the façade opening area leads to increased shear deformations while longer buildings caused an increase in bending deflections. An evaluation of the widely accepted framework of treating a structure separately at either side of the greenfield inflection point shows that this procedure can underestimate building damage.
    • Download: (1.747Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Building Deformation Caused by Tunneling: Centrifuge Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265773
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorStefan Ritter
    contributor authorGiorgia Giardina
    contributor authorAndrea Franza
    contributor authorMatthew J. DeJong
    date accessioned2022-01-30T19:40:36Z
    date available2022-01-30T19:40:36Z
    date issued2020
    identifier other%28ASCE%29GT.1943-5606.0002223.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265773
    description abstractThis paper investigates the deformation of buildings due to tunneling-induced soil displacements. Centrifuge model tests of three-dimensionally (3D) printed building models subject to a plane-strain tunnel excavation in dense, dry sand are discussed. The small-scale structures replicate important building characteristics including brittle material properties similar to masonry, a realistic building layout, façade openings, strip footings, and a rough soil-structure interface. Digital images were captured during the experiments, enabling image-based measurements of the building response. Results demonstrate the essential role of the building-to-tunnel position and structural details (i.e., opening percentage and building length). The onset of building cracking and cracking patterns confirms the importance of the building-to-tunnel position and structural details. The tests illustrate that an increase in the façade opening area leads to increased shear deformations while longer buildings caused an increase in bending deflections. An evaluation of the widely accepted framework of treating a structure separately at either side of the greenfield inflection point shows that this procedure can underestimate building damage.
    publisherASCE
    titleBuilding Deformation Caused by Tunneling: Centrifuge Modeling
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002223
    page04020017
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian