YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observations of the Effects of a Clay Layer on Suction Bucket Installation in Sand

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 005
    Author:
    Raffaele Ragni
    ,
    Britta Bienen
    ,
    Conleth D. O’Loughlin
    ,
    Samuel A. Stanier
    ,
    Mark J. Cassidy
    ,
    Neil Morgan
    DOI: 10.1061/(ASCE)GT.1943-5606.0002217
    Publisher: ASCE
    Abstract: Suction buckets are becoming established as a viable foundation solution for offshore wind turbines. In sand, suction-induced seepage flow reduces effective stresses at the skirt tips, which decreases penetration resistance. However, layered seabeds are often encountered in areas of offshore wind farm development. The effect of the presence of a clay layer on the suction-induced seepage flow in the sand layer is not well understood. Therefore in this study, the effects of a clay layer on suction bucket installation in dense sand was investigated. This was achieved by analyzing images of a half-bucket installed against a Perspex window. The images were captured during tests performed in a geotechnical centrifuge, such that the stress levels are realistic and relevant to field conditions. Installations in sand-over-clay were unproblematic and characterized by deformation of the sand-clay interface, with no clear interruption of the seepage flow. Installations in clay-over-sand were also successful. Uplift of the clay plug was identified as the mechanism to transfer suction to the underlying sand, creating seepage flow and thus facilitating further skirt penetration rather than terminating the installation.
    • Download: (7.639Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observations of the Effects of a Clay Layer on Suction Bucket Installation in Sand

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265768
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorRaffaele Ragni
    contributor authorBritta Bienen
    contributor authorConleth D. O’Loughlin
    contributor authorSamuel A. Stanier
    contributor authorMark J. Cassidy
    contributor authorNeil Morgan
    date accessioned2022-01-30T19:40:28Z
    date available2022-01-30T19:40:28Z
    date issued2020
    identifier other%28ASCE%29GT.1943-5606.0002217.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265768
    description abstractSuction buckets are becoming established as a viable foundation solution for offshore wind turbines. In sand, suction-induced seepage flow reduces effective stresses at the skirt tips, which decreases penetration resistance. However, layered seabeds are often encountered in areas of offshore wind farm development. The effect of the presence of a clay layer on the suction-induced seepage flow in the sand layer is not well understood. Therefore in this study, the effects of a clay layer on suction bucket installation in dense sand was investigated. This was achieved by analyzing images of a half-bucket installed against a Perspex window. The images were captured during tests performed in a geotechnical centrifuge, such that the stress levels are realistic and relevant to field conditions. Installations in sand-over-clay were unproblematic and characterized by deformation of the sand-clay interface, with no clear interruption of the seepage flow. Installations in clay-over-sand were also successful. Uplift of the clay plug was identified as the mechanism to transfer suction to the underlying sand, creating seepage flow and thus facilitating further skirt penetration rather than terminating the installation.
    publisherASCE
    titleObservations of the Effects of a Clay Layer on Suction Bucket Installation in Sand
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002217
    page04020020
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian