YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Solutions for Ultimate Limit State Design of Thermal Piles

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 005
    Author:
    Chiara Iodice
    ,
    Raffaele Di Laora
    ,
    Alessandro Mandolini
    DOI: 10.1061/(ASCE)GT.1943-5606.0002204
    Publisher: ASCE
    Abstract: This work aimed at providing analytical closed-form solutions for the design of thermal piles. To this end, a model in which a cylindrical pile is attached along the shaft to a series of distributed vertical springs representing soil stiffness is proposed. The pile has constant section and elastic properties; the restraints provided by the superstructure and base stiffness are represented through concentrated springs. The model allows derivation of exact solutions for homogeneous, two-layer soil and soil with linearly increasing stiffness with depth. In addition, approximate energy solutions are derived via the principle of virtual work for more general subsoil conditions with spring stiffness calibrated through finite element results. Expressions for the axial force and shear stress at the pile–soil interface are provided for typical soil stiffness distributions. A successful comparison to literature studies, involving complex transient-coupled numerical analyses and two field tests, corroborate model reliability. The proposed analytical solutions provide insight into the behavior of thermally loaded piles and can be used as a simple tool for ultimate limit state design.
    • Download: (1.278Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Solutions for Ultimate Limit State Design of Thermal Piles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265762
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorChiara Iodice
    contributor authorRaffaele Di Laora
    contributor authorAlessandro Mandolini
    date accessioned2022-01-30T19:40:19Z
    date available2022-01-30T19:40:19Z
    date issued2020
    identifier other%28ASCE%29GT.1943-5606.0002204.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265762
    description abstractThis work aimed at providing analytical closed-form solutions for the design of thermal piles. To this end, a model in which a cylindrical pile is attached along the shaft to a series of distributed vertical springs representing soil stiffness is proposed. The pile has constant section and elastic properties; the restraints provided by the superstructure and base stiffness are represented through concentrated springs. The model allows derivation of exact solutions for homogeneous, two-layer soil and soil with linearly increasing stiffness with depth. In addition, approximate energy solutions are derived via the principle of virtual work for more general subsoil conditions with spring stiffness calibrated through finite element results. Expressions for the axial force and shear stress at the pile–soil interface are provided for typical soil stiffness distributions. A successful comparison to literature studies, involving complex transient-coupled numerical analyses and two field tests, corroborate model reliability. The proposed analytical solutions provide insight into the behavior of thermally loaded piles and can be used as a simple tool for ultimate limit state design.
    publisherASCE
    titleAnalytical Solutions for Ultimate Limit State Design of Thermal Piles
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002204
    page04020016
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2020:;Volume ( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian