YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spectral Anomaly Detection in Large Graphs Using a Complex Moment-Based Eigenvalue Solver

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2020:;Volume ( 006 ):;issue: 002
    Author:
    Yasunori Futamura
    ,
    Xiucai Ye
    ,
    Akira Imakura
    ,
    Tetsuya Sakurai
    DOI: 10.1061/AJRUA6.0001054
    Publisher: ASCE
    Abstract: Detecting anomalies is an important and challenging task for many applications. In recent years, spectral methods have been proposed to detect anomalous subgraphs embedded into a background graph using eigenvectors corresponding to some of the largest positive eigenvalues of the graph’s modularity matrix. The spectral methods use the standard Lanczos-type eigenvalue solver to compute these exterior eigenpairs. However, eigenvectors with interior eigenvalues could also indicate the existence of anomalous subgraphs. In this study, we propose an efficient method using a complex moment-based eigenvalue solver, which can efficiently search anomalous subgraphs related to eigenvectors with both exterior and interior eigenvalues. Experimental results show the potential of the proposed method.
    • Download: (378.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spectral Anomaly Detection in Large Graphs Using a Complex Moment-Based Eigenvalue Solver

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264807
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorYasunori Futamura
    contributor authorXiucai Ye
    contributor authorAkira Imakura
    contributor authorTetsuya Sakurai
    date accessioned2022-01-30T19:10:59Z
    date available2022-01-30T19:10:59Z
    date issued2020
    identifier otherAJRUA6.0001054.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264807
    description abstractDetecting anomalies is an important and challenging task for many applications. In recent years, spectral methods have been proposed to detect anomalous subgraphs embedded into a background graph using eigenvectors corresponding to some of the largest positive eigenvalues of the graph’s modularity matrix. The spectral methods use the standard Lanczos-type eigenvalue solver to compute these exterior eigenpairs. However, eigenvectors with interior eigenvalues could also indicate the existence of anomalous subgraphs. In this study, we propose an efficient method using a complex moment-based eigenvalue solver, which can efficiently search anomalous subgraphs related to eigenvectors with both exterior and interior eigenvalues. Experimental results show the potential of the proposed method.
    publisherASCE
    titleSpectral Anomaly Detection in Large Graphs Using a Complex Moment-Based Eigenvalue Solver
    typeJournal Paper
    journal volume6
    journal issue2
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001054
    page04020010
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2020:;Volume ( 006 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian