YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bayesian Updating of Model Parameters by Iterative Particle Filter with Importance Sampling

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2020:;Volume ( 006 ):;issue: 002
    Author:
    Ikumasa Yoshida
    ,
    Takayuki Shuku
    DOI: 10.1061/AJRUA6.0001047
    Publisher: ASCE
    Abstract: Data assimilation with a particle filter (PF) has attracted attention for use in Bayesian updating. However, PFs have a problem known as degeneracy, where weights tend to concentrate into only a few particles after a few iterations (all other particles degenerate), which causes poor computational performance. This study discusses the applicability of a PF to the Bayesian updating of model parameters and probabilistic prediction with the updated model and proposes a method that uses a PF to limit degeneracy. The proposed method, called iterative particle filter with importance sampling (IPFIS), uses iterative observation updating in a PF, a Gaussian mixture model, and importance sampling. Two examples are used to demonstrate the proposed algorithm. In the first example, posterior distributions of the stiffness parameters of a two-degree-of-freedom model are identified. In the second example, IPFIS is applied to a consolidation settlement problem of a soft ground due to embankment loading, and probability distributions of the geotechnical parameters in an elastoplastic finite-element model and the simulated settlement displacements are updated based on time-series observation.
    • Download: (1.489Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bayesian Updating of Model Parameters by Iterative Particle Filter with Importance Sampling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264801
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorIkumasa Yoshida
    contributor authorTakayuki Shuku
    date accessioned2022-01-30T19:10:47Z
    date available2022-01-30T19:10:47Z
    date issued2020
    identifier otherAJRUA6.0001047.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264801
    description abstractData assimilation with a particle filter (PF) has attracted attention for use in Bayesian updating. However, PFs have a problem known as degeneracy, where weights tend to concentrate into only a few particles after a few iterations (all other particles degenerate), which causes poor computational performance. This study discusses the applicability of a PF to the Bayesian updating of model parameters and probabilistic prediction with the updated model and proposes a method that uses a PF to limit degeneracy. The proposed method, called iterative particle filter with importance sampling (IPFIS), uses iterative observation updating in a PF, a Gaussian mixture model, and importance sampling. Two examples are used to demonstrate the proposed algorithm. In the first example, posterior distributions of the stiffness parameters of a two-degree-of-freedom model are identified. In the second example, IPFIS is applied to a consolidation settlement problem of a soft ground due to embankment loading, and probability distributions of the geotechnical parameters in an elastoplastic finite-element model and the simulated settlement displacements are updated based on time-series observation.
    publisherASCE
    titleBayesian Updating of Model Parameters by Iterative Particle Filter with Importance Sampling
    typeJournal Paper
    journal volume6
    journal issue2
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001047
    page04020007
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2020:;Volume ( 006 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian