YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Method to Diagnose Cyclone–Cyclone Interaction and Its Influences on Precipitation

    Source: Journal of Applied Meteorology and Climatology:;2019:;volume 058:;issue 008::page 1821
    Author:
    Cao, Zuohao
    ,
    Xu, Qin
    ,
    Zhang, Da-Lin
    DOI: 10.1175/JAMC-D-18-0344.1
    Publisher: American Meteorological Society
    Abstract: AbstractUnlike the classical point vortex model, a new method is developed to extract flows induced not only by vorticity but also by divergence in a well-defined vortex core area of a cyclone. This new method is applied to diagnosing the interactions of three midlatitude cyclones (called A, B, and C) that account for a missed summer severe rainfall forecast, in which the daily precipitation predicted by the Canadian operational model is an order of magnitude smaller than the rain gauge and radar measurements. In this event, cyclone B, responsible for the severe rainfall occurrence, was advected largely by flows induced by two neighboring cyclones: A and C to the west and east, respectively. This work attempts to assess whether and to what degree the vertical tilt of the observed cyclone versus that of the forecast cyclone B is caused by advections of the environmental flows (including A- and C-induced flows) at 500 and 1000 hPa. Results show that the observed cyclone B was advected mainly by the cyclone A?induced flow at 500 hPa into a vertically tilted structure that was northwestward against the vertical shear of the environmental flow and thus favorable for upward motion and cyclone intensification around the time of severe rainfall. However, the forecast cyclone B was advected largely by the cyclone A?induced flow at 500 hPa and the cyclone C?induced flow at 1000 hPa into an increasingly northward-tilted structure that was along the vertical shear of the environmental flow and thus unfavorable for upward motion and cyclone intensification, leading to the missed forecast of severe rainfall. Suggestions are made for future improvements of model forecasts.
    • Download: (8.652Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Method to Diagnose Cyclone–Cyclone Interaction and Its Influences on Precipitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263570
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorCao, Zuohao
    contributor authorXu, Qin
    contributor authorZhang, Da-Lin
    date accessioned2019-10-05T06:50:08Z
    date available2019-10-05T06:50:08Z
    date copyright6/14/2019 12:00:00 AM
    date issued2019
    identifier otherJAMC-D-18-0344.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263570
    description abstractAbstractUnlike the classical point vortex model, a new method is developed to extract flows induced not only by vorticity but also by divergence in a well-defined vortex core area of a cyclone. This new method is applied to diagnosing the interactions of three midlatitude cyclones (called A, B, and C) that account for a missed summer severe rainfall forecast, in which the daily precipitation predicted by the Canadian operational model is an order of magnitude smaller than the rain gauge and radar measurements. In this event, cyclone B, responsible for the severe rainfall occurrence, was advected largely by flows induced by two neighboring cyclones: A and C to the west and east, respectively. This work attempts to assess whether and to what degree the vertical tilt of the observed cyclone versus that of the forecast cyclone B is caused by advections of the environmental flows (including A- and C-induced flows) at 500 and 1000 hPa. Results show that the observed cyclone B was advected mainly by the cyclone A?induced flow at 500 hPa into a vertically tilted structure that was northwestward against the vertical shear of the environmental flow and thus favorable for upward motion and cyclone intensification around the time of severe rainfall. However, the forecast cyclone B was advected largely by the cyclone A?induced flow at 500 hPa and the cyclone C?induced flow at 1000 hPa into an increasingly northward-tilted structure that was along the vertical shear of the environmental flow and thus unfavorable for upward motion and cyclone intensification, leading to the missed forecast of severe rainfall. Suggestions are made for future improvements of model forecasts.
    publisherAmerican Meteorological Society
    titleA New Method to Diagnose Cyclone–Cyclone Interaction and Its Influences on Precipitation
    typeJournal Paper
    journal volume58
    journal issue8
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-18-0344.1
    journal fristpage1821
    journal lastpage1851
    treeJournal of Applied Meteorology and Climatology:;2019:;volume 058:;issue 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian