YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Observed Effects of Utility-Scale Photovoltaics on Near-Surface Air Temperature and Energy Balance

    Source: Journal of Applied Meteorology and Climatology:;2019:;volume 058:;issue 005::page 989
    Author:
    Broadbent, Ashley M.
    ,
    Krayenhoff, E. Scott
    ,
    Georgescu, Matei
    ,
    Sailor, David J.
    DOI: 10.1175/JAMC-D-18-0271.1
    Publisher: American Meteorological Society
    Abstract: AbstractUtility-scale solar power plants are a rapidly growing component of the renewable energy sector. While most agree that solar power can decrease greenhouse gas emissions, the effects of photovoltaic (PV) systems on surface energy exchanges and near-surface meteorology are not well understood. This study presents data from two eddy covariance observational towers, placed within and adjacent to a utility-scale PV array in southern Arizona. The observational period (October 2017?July 2018) includes the full range of annual temperature variation. Average daily maximum 1.5-m air temperature at the PV array was 1.3°C warmer than the reference (i.e., non-PV) site, whereas no significant difference in 1.5-m nocturnal air temperature was observed. PV modules captured the majority of solar radiation and were the primary energetically active surface during the day. Despite the removal of energy by electricity production, the modules increased daytime net radiation Q* available for partitioning by reducing surface albedo. The PV modules shift surface energy balance partitioning away from upward longwave radiation and heat storage and toward sensible heat flux QH because of their low emissivity, low heat capacity, and increased surface area and roughness, which facilitates more efficient QH from the surface. The PV modules significantly reduce ground heat flux QG storage and nocturnal release, as the soil beneath the modules is well shaded. Our work demonstrates the importance of targeted observational campaigns to inform process-based understanding associated with PV systems. It further establishes a basis for observationally based PV energy balance models that may be used to examine climatic effects due to large-scale deployment.
    • Download: (3.108Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Observed Effects of Utility-Scale Photovoltaics on Near-Surface Air Temperature and Energy Balance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4263558
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorBroadbent, Ashley M.
    contributor authorKrayenhoff, E. Scott
    contributor authorGeorgescu, Matei
    contributor authorSailor, David J.
    date accessioned2019-10-05T06:49:53Z
    date available2019-10-05T06:49:53Z
    date copyright2/27/2019 12:00:00 AM
    date issued2019
    identifier otherJAMC-D-18-0271.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263558
    description abstractAbstractUtility-scale solar power plants are a rapidly growing component of the renewable energy sector. While most agree that solar power can decrease greenhouse gas emissions, the effects of photovoltaic (PV) systems on surface energy exchanges and near-surface meteorology are not well understood. This study presents data from two eddy covariance observational towers, placed within and adjacent to a utility-scale PV array in southern Arizona. The observational period (October 2017?July 2018) includes the full range of annual temperature variation. Average daily maximum 1.5-m air temperature at the PV array was 1.3°C warmer than the reference (i.e., non-PV) site, whereas no significant difference in 1.5-m nocturnal air temperature was observed. PV modules captured the majority of solar radiation and were the primary energetically active surface during the day. Despite the removal of energy by electricity production, the modules increased daytime net radiation Q* available for partitioning by reducing surface albedo. The PV modules shift surface energy balance partitioning away from upward longwave radiation and heat storage and toward sensible heat flux QH because of their low emissivity, low heat capacity, and increased surface area and roughness, which facilitates more efficient QH from the surface. The PV modules significantly reduce ground heat flux QG storage and nocturnal release, as the soil beneath the modules is well shaded. Our work demonstrates the importance of targeted observational campaigns to inform process-based understanding associated with PV systems. It further establishes a basis for observationally based PV energy balance models that may be used to examine climatic effects due to large-scale deployment.
    publisherAmerican Meteorological Society
    titleThe Observed Effects of Utility-Scale Photovoltaics on Near-Surface Air Temperature and Energy Balance
    typeJournal Paper
    journal volume58
    journal issue5
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-18-0271.1
    journal fristpage989
    journal lastpage1006
    treeJournal of Applied Meteorology and Climatology:;2019:;volume 058:;issue 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian