YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessing Wind Data from Reanalyses for the Upper Midwest

    Source: Journal of Applied Meteorology and Climatology:;2019:;volume 058:;issue 003::page 429
    Author:
    Coburn, Jacob J.
    DOI: 10.1175/JAMC-D-18-0164.1
    Publisher: American Meteorological Society
    Abstract: Wind is an important atmospheric variable that is receiving increased attention as the world seeks to shift from carbon-based fuels in order to mitigate climate change. This has resulted in increased need for more temporally and spatially continuous wind information, which is often met through the use of reanalysis data. However, limited work has been done to assess the long-term accuracy of the wind data against observations in the context of specific applications. This study focuses on the representation of daily and monthly average 10-m wind speed data in the upper Midwest by six global reanalysis datasets. The accuracy of the datasets was assessed using several measures of skill, as well as the associated wind speed distributions and long-term trends. While it was found that higher resolution and complexity in more recent generations of reanalyses produced more accurate simulations of wind in the region, important biases remained. High variability in the observed data resulted in lower correlations at the monthly time scale. As with previous research, linear trends calculated from the reanalyzed wind speeds were significantly underestimated compared to observed trends. While it is expected that future improvements in model resolution, physics, and data assimilation will further improve wind representation in reanalyses, accounting for the differences between the available datasets and their associated biases will be important for potential applications of the output, particularly wind resource assessment.
    • Download: (1.705Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessing Wind Data from Reanalyses for the Upper Midwest

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4262577
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorCoburn, Jacob J.
    date accessioned2019-09-22T09:03:23Z
    date available2019-09-22T09:03:23Z
    date copyright1/15/2019 12:00:00 AM
    date issued2019
    identifier otherJAMC-D-18-0164.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262577
    description abstractWind is an important atmospheric variable that is receiving increased attention as the world seeks to shift from carbon-based fuels in order to mitigate climate change. This has resulted in increased need for more temporally and spatially continuous wind information, which is often met through the use of reanalysis data. However, limited work has been done to assess the long-term accuracy of the wind data against observations in the context of specific applications. This study focuses on the representation of daily and monthly average 10-m wind speed data in the upper Midwest by six global reanalysis datasets. The accuracy of the datasets was assessed using several measures of skill, as well as the associated wind speed distributions and long-term trends. While it was found that higher resolution and complexity in more recent generations of reanalyses produced more accurate simulations of wind in the region, important biases remained. High variability in the observed data resulted in lower correlations at the monthly time scale. As with previous research, linear trends calculated from the reanalyzed wind speeds were significantly underestimated compared to observed trends. While it is expected that future improvements in model resolution, physics, and data assimilation will further improve wind representation in reanalyses, accounting for the differences between the available datasets and their associated biases will be important for potential applications of the output, particularly wind resource assessment.
    publisherAmerican Meteorological Society
    titleAssessing Wind Data from Reanalyses for the Upper Midwest
    typeJournal Paper
    journal volume58
    journal issue3
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-18-0164.1
    journal fristpage429
    journal lastpage446
    treeJournal of Applied Meteorology and Climatology:;2019:;volume 058:;issue 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian