YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wind Gust Characterization at Wind Turbine Relevant Heights in Moderately Complex Terrain

    Source: Journal of Applied Meteorology and Climatology:;2018:;volume 057:;issue 007::page 1459
    Author:
    Hu, W.
    ,
    Letson, F.
    ,
    Barthelmie, R. J.
    ,
    Pryor, S. C.
    DOI: 10.1175/JAMC-D-18-0040.1
    Publisher: American Meteorological Society
    Abstract: AbstractImproved understanding of wind gusts in complex terrain is critically important to wind engineering and specifically the wind energy industry. Observational data from 3D sonic anemometers deployed at 3 and 65 m at a site in moderately complex terrain within the northeastern United States are used to calculate 10 descriptors of wind gusts and to determine the parent distributions that best describe these parameters. It is shown that the parent distributions exhibit consistency across different descriptors of the gust climate. Specifically, the parameters that describe the gust intensity (gust amplitude, rise magnitude, and lapse magnitude; i.e., properties that have units of length per time) fit the two-parameter Weibull distribution, those that are unitless ratios (gust factor and peak factor) are described by log-logistic distributions, and all other properties (peak gust, rise and lapse times, gust asymmetric factor, and gust length scale) are lognormally distributed. It is also shown that gust factors scale with turbulence intensity, but gusts are distinguishable in power spectra of the longitudinal wind component (i.e., they have demonstrably different length scales than the average eddy length scale). Gust periods at the lower measurement height (3 m) are consistent with shear production, whereas at 65 m they are not. At this site, there is only a weak directional dependence of gust properties on site terrain and land cover variability along sectorial transects, but large gust length scales and gust factors are more likely to be observed in unstable atmospheric conditions.
    • Download: (2.767Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wind Gust Characterization at Wind Turbine Relevant Heights in Moderately Complex Terrain

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261691
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorHu, W.
    contributor authorLetson, F.
    contributor authorBarthelmie, R. J.
    contributor authorPryor, S. C.
    date accessioned2019-09-19T10:06:56Z
    date available2019-09-19T10:06:56Z
    date copyright5/4/2018 12:00:00 AM
    date issued2018
    identifier otherjamc-d-18-0040.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261691
    description abstractAbstractImproved understanding of wind gusts in complex terrain is critically important to wind engineering and specifically the wind energy industry. Observational data from 3D sonic anemometers deployed at 3 and 65 m at a site in moderately complex terrain within the northeastern United States are used to calculate 10 descriptors of wind gusts and to determine the parent distributions that best describe these parameters. It is shown that the parent distributions exhibit consistency across different descriptors of the gust climate. Specifically, the parameters that describe the gust intensity (gust amplitude, rise magnitude, and lapse magnitude; i.e., properties that have units of length per time) fit the two-parameter Weibull distribution, those that are unitless ratios (gust factor and peak factor) are described by log-logistic distributions, and all other properties (peak gust, rise and lapse times, gust asymmetric factor, and gust length scale) are lognormally distributed. It is also shown that gust factors scale with turbulence intensity, but gusts are distinguishable in power spectra of the longitudinal wind component (i.e., they have demonstrably different length scales than the average eddy length scale). Gust periods at the lower measurement height (3 m) are consistent with shear production, whereas at 65 m they are not. At this site, there is only a weak directional dependence of gust properties on site terrain and land cover variability along sectorial transects, but large gust length scales and gust factors are more likely to be observed in unstable atmospheric conditions.
    publisherAmerican Meteorological Society
    titleWind Gust Characterization at Wind Turbine Relevant Heights in Moderately Complex Terrain
    typeJournal Paper
    journal volume57
    journal issue7
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-18-0040.1
    journal fristpage1459
    journal lastpage1476
    treeJournal of Applied Meteorology and Climatology:;2018:;volume 057:;issue 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian