YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cloud-Spacing Effects upon Entrainment and Rainfall along a Convective Line

    Source: Journal of Applied Meteorology and Climatology:;2018:;volume 057:;issue 008::page 1865
    Author:
    Moser, Daniel H.
    ,
    Lasher-Trapp, Sonia
    DOI: 10.1175/JAMC-D-17-0363.1
    Publisher: American Meteorological Society
    Abstract: AbstractCumulus clouds modify their immediate surroundings by detraining their warm, humid updrafts. When clouds are closely spaced, this conditioning of the local environment may alter the properties of the air entrained by neighboring clouds and slow their dilution. This effect has not been quantified, nor has its importance been determined for influencing the amount of convective rainfall from a system of neighboring clouds. Here, a series of idealized numerical simulations, which are based on an observed line of precipitating cumulus congestus clouds, is performed using increasingly smaller cloud spacing to investigate how cloud proximity may alter entrainment, cloud development, and convective rainfall. For clouds of radius R, which is approximately 1 km in these simulations, distances between updraft centers from 4R through 9R are tested. Over this range, the initial clouds all exhibit negligible differences in the directly calculated entrainment rates and in the thermodynamic characteristics of the entrained air. Instead, for cloud separation distances of less than 6R, the subcloud inflow is increasingly disturbed, limiting initial cloud depths and slowing updraft speeds and precipitation onset. Ultimately, however, these same cases produce a new generation of clouds that are stronger and produce more rainfall than for all other cases. The smaller cloud separation distance allows precipitation outflows from the initial clouds to meet and force new, stronger cloud updrafts. For this second generation of clouds, their entrained air is slightly more humid, but the stronger updrafts and ingestion of residual ice and precipitation from earlier clouds appear to be most important for enhancing their rainfall.
    • Download: (3.560Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cloud-Spacing Effects upon Entrainment and Rainfall along a Convective Line

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261685
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorMoser, Daniel H.
    contributor authorLasher-Trapp, Sonia
    date accessioned2019-09-19T10:06:54Z
    date available2019-09-19T10:06:54Z
    date copyright6/28/2018 12:00:00 AM
    date issued2018
    identifier otherjamc-d-17-0363.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261685
    description abstractAbstractCumulus clouds modify their immediate surroundings by detraining their warm, humid updrafts. When clouds are closely spaced, this conditioning of the local environment may alter the properties of the air entrained by neighboring clouds and slow their dilution. This effect has not been quantified, nor has its importance been determined for influencing the amount of convective rainfall from a system of neighboring clouds. Here, a series of idealized numerical simulations, which are based on an observed line of precipitating cumulus congestus clouds, is performed using increasingly smaller cloud spacing to investigate how cloud proximity may alter entrainment, cloud development, and convective rainfall. For clouds of radius R, which is approximately 1 km in these simulations, distances between updraft centers from 4R through 9R are tested. Over this range, the initial clouds all exhibit negligible differences in the directly calculated entrainment rates and in the thermodynamic characteristics of the entrained air. Instead, for cloud separation distances of less than 6R, the subcloud inflow is increasingly disturbed, limiting initial cloud depths and slowing updraft speeds and precipitation onset. Ultimately, however, these same cases produce a new generation of clouds that are stronger and produce more rainfall than for all other cases. The smaller cloud separation distance allows precipitation outflows from the initial clouds to meet and force new, stronger cloud updrafts. For this second generation of clouds, their entrained air is slightly more humid, but the stronger updrafts and ingestion of residual ice and precipitation from earlier clouds appear to be most important for enhancing their rainfall.
    publisherAmerican Meteorological Society
    titleCloud-Spacing Effects upon Entrainment and Rainfall along a Convective Line
    typeJournal Paper
    journal volume57
    journal issue8
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-17-0363.1
    journal fristpage1865
    journal lastpage1882
    treeJournal of Applied Meteorology and Climatology:;2018:;volume 057:;issue 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian