YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Study of Aviation Turbulence Encountered on 13 February 2013 over the Yellow Sea between China and the Korean Peninsula

    Source: Journal of Applied Meteorology and Climatology:;2018:;volume 057:;issue 004::page 1043
    Author:
    Lee, Dan-Bi
    ,
    Chun, Hye-Yeong
    DOI: 10.1175/JAMC-D-17-0247.1
    Publisher: American Meteorological Society
    Abstract: AbstractAt 0247 UTC 13 February 2013, a South Korean commercial aircraft encountered moderate-level clear-air turbulence at ~24 000 ft (~7.3 km) over the Yellow Sea (121.25°E, 38.55°N) en route from Incheon, South Korea, to Tianjin, China. Two crew members were severely injured by this event. To investigate the possible mechanisms of this event, a high-resolution numerical simulation using the Weather Research and Forecasting Model was conducted. In the synoptic-scale flow pattern, one of two bifurcated jet streams passed over the Yellow Sea, and strong horizontal and vertical gradients of the wind occurred on the northern edge of the jet stream near the flight route. An upper-level frontal system on the cyclonic shear side of the jet intensified as it moved northward toward a strengthening upper-level trough in northeastern China. The developed jet?frontal system induced strong vertical wind shear and tropopause folding, which extended down to about z = 5 km, near the observed turbulence region. Despite a relatively high stability with an intrusion of stratospheric air with tropopause folding, the strong vertical wind shear led to a small Richardson number in the incident region, which in turn induced the aviation turbulence through the Kelvin?Helmholtz instability. Although small-scale mountain waves were evident during the passage of flight before the incident time, breaking of these waves was not likely the key factor for the observed turbulence, given that the wave amplitudes were weak and that the strong zonal wind on the upstream of the mountain waves prohibited wave saturation and breakdown.
    • Download: (3.790Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Study of Aviation Turbulence Encountered on 13 February 2013 over the Yellow Sea between China and the Korean Peninsula

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261642
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorLee, Dan-Bi
    contributor authorChun, Hye-Yeong
    date accessioned2019-09-19T10:06:39Z
    date available2019-09-19T10:06:39Z
    date copyright3/7/2018 12:00:00 AM
    date issued2018
    identifier otherjamc-d-17-0247.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261642
    description abstractAbstractAt 0247 UTC 13 February 2013, a South Korean commercial aircraft encountered moderate-level clear-air turbulence at ~24 000 ft (~7.3 km) over the Yellow Sea (121.25°E, 38.55°N) en route from Incheon, South Korea, to Tianjin, China. Two crew members were severely injured by this event. To investigate the possible mechanisms of this event, a high-resolution numerical simulation using the Weather Research and Forecasting Model was conducted. In the synoptic-scale flow pattern, one of two bifurcated jet streams passed over the Yellow Sea, and strong horizontal and vertical gradients of the wind occurred on the northern edge of the jet stream near the flight route. An upper-level frontal system on the cyclonic shear side of the jet intensified as it moved northward toward a strengthening upper-level trough in northeastern China. The developed jet?frontal system induced strong vertical wind shear and tropopause folding, which extended down to about z = 5 km, near the observed turbulence region. Despite a relatively high stability with an intrusion of stratospheric air with tropopause folding, the strong vertical wind shear led to a small Richardson number in the incident region, which in turn induced the aviation turbulence through the Kelvin?Helmholtz instability. Although small-scale mountain waves were evident during the passage of flight before the incident time, breaking of these waves was not likely the key factor for the observed turbulence, given that the wave amplitudes were weak and that the strong zonal wind on the upstream of the mountain waves prohibited wave saturation and breakdown.
    publisherAmerican Meteorological Society
    titleA Numerical Study of Aviation Turbulence Encountered on 13 February 2013 over the Yellow Sea between China and the Korean Peninsula
    typeJournal Paper
    journal volume57
    journal issue4
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-17-0247.1
    journal fristpage1043
    journal lastpage1060
    treeJournal of Applied Meteorology and Climatology:;2018:;volume 057:;issue 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian