YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thunderstorm Characteristics during the Ontario Winter Lake-Effect Systems Project

    Source: Journal of Applied Meteorology and Climatology:;2018:;volume 057:;issue 004::page 853
    Author:
    Steiger, Scott M.
    ,
    Kranz, Tyler
    ,
    Letcher, Theodore W.
    DOI: 10.1175/JAMC-D-17-0188.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe Ontario Winter Lake-Effect Systems (OWLeS) field campaign during the winter season of 2013/14 provided unprecedented data with regard to the structure and behavior of long-lake-axis-parallel (LLAP) lake-effect storms. One of the interesting characteristics of LLAP storm bands is their ability to initiate lightning. The OWLeS datasets provide an opportunity to examine more thoroughly the kinematics and microphysics of lake-effect thunder-snowstorms than ever before. The OWLeS facilities and field personnel observed six lake-effect thunderstorms during December?January 2013/14. Most of them produced very little lightning (fewer than six cloud-to-ground strokes or intracloud pulses recorded by the National Lightning Detection Network). The 7 January 2014 storm had over 50 strokes and pulses, however, which resulted in 20 flashes over a 6-h period (0630?1230 UTC), making it the most electrically active storm during the field campaign. Relative to the 18 December 2013 storm, which only had three flashes, the 7 January 2014 case had a deeper boundary layer and greater instability. Also, 45% of the lightning during the 7 January storm was likely due to flashes initiated by wind turbines or other man-made antennas, along with all of the lightning observed during 18 December. No lightning was documented over Lake Ontario, the primary source of instability for these storms.
    • Download: (4.305Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thunderstorm Characteristics during the Ontario Winter Lake-Effect Systems Project

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261617
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorSteiger, Scott M.
    contributor authorKranz, Tyler
    contributor authorLetcher, Theodore W.
    date accessioned2019-09-19T10:06:31Z
    date available2019-09-19T10:06:31Z
    date copyright2/14/2018 12:00:00 AM
    date issued2018
    identifier otherjamc-d-17-0188.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261617
    description abstractAbstractThe Ontario Winter Lake-Effect Systems (OWLeS) field campaign during the winter season of 2013/14 provided unprecedented data with regard to the structure and behavior of long-lake-axis-parallel (LLAP) lake-effect storms. One of the interesting characteristics of LLAP storm bands is their ability to initiate lightning. The OWLeS datasets provide an opportunity to examine more thoroughly the kinematics and microphysics of lake-effect thunder-snowstorms than ever before. The OWLeS facilities and field personnel observed six lake-effect thunderstorms during December?January 2013/14. Most of them produced very little lightning (fewer than six cloud-to-ground strokes or intracloud pulses recorded by the National Lightning Detection Network). The 7 January 2014 storm had over 50 strokes and pulses, however, which resulted in 20 flashes over a 6-h period (0630?1230 UTC), making it the most electrically active storm during the field campaign. Relative to the 18 December 2013 storm, which only had three flashes, the 7 January 2014 case had a deeper boundary layer and greater instability. Also, 45% of the lightning during the 7 January storm was likely due to flashes initiated by wind turbines or other man-made antennas, along with all of the lightning observed during 18 December. No lightning was documented over Lake Ontario, the primary source of instability for these storms.
    publisherAmerican Meteorological Society
    titleThunderstorm Characteristics during the Ontario Winter Lake-Effect Systems Project
    typeJournal Paper
    journal volume57
    journal issue4
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-17-0188.1
    journal fristpage853
    journal lastpage874
    treeJournal of Applied Meteorology and Climatology:;2018:;volume 057:;issue 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian