YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Two Types of Physical Inconsistency to Avoid with Univariate Quantile Mapping: A Case Study over North America Concerning Relative Humidity and Its Parent Variables

    Source: Journal of Applied Meteorology and Climatology:;2017:;volume 057:;issue 002::page 347
    Author:
    Grenier, Patrick
    DOI: 10.1175/JAMC-D-17-0177.1
    Publisher: American Meteorological Society
    Abstract: AbstractUnivariate quantile mapping (QM), a technique often used to statistically postprocess climate simulations, may generate physical inconsistency. This issue is investigated here by classifying physical inconsistency into two types. Type I refers to the attribution of an impossible value to a single variable, and type II refers to the breaking of a fixed intervariable relationship. Here QM is applied to relative humidity (RH) and its parent variables, namely, temperature, pressure, and specific humidity. Twelve sites representing various climate types across North America are investigated. Time series from an ensemble of ten 3-hourly simulations are postprocessed, with the CFSR reanalysis used as the reference product. For type I, results indicate that direct postprocessing of RH generates supersaturation values (>100%) at relatively small frequencies of occurrence. Generated supersaturation amplitudes exceed observed values in fog and clouds. Supersaturation values are generally more frequent and higher when RH is deduced from postprocessed parent variables. For type II, results show that univariate QM practically always breaks the intervariable thermodynamic relationship. Heuristic proxies are designed for comparing the initial bias with physical inconsistency of type II, and results suggest that QM generates a problem that is arguably lesser than the one it is intended to solve. When physical inconsistency is avoided by capping one humidity variable at its saturation level and deducing the other, statistical equivalence with the reference product remains much improved relative to the initial situation. A recommendation for climate services is to postprocess RH and deduce specific humidity rather than the opposite.
    • Download: (1.895Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Two Types of Physical Inconsistency to Avoid with Univariate Quantile Mapping: A Case Study over North America Concerning Relative Humidity and Its Parent Variables

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261610
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorGrenier, Patrick
    date accessioned2019-09-19T10:06:28Z
    date available2019-09-19T10:06:28Z
    date copyright11/10/2017 12:00:00 AM
    date issued2017
    identifier otherjamc-d-17-0177.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261610
    description abstractAbstractUnivariate quantile mapping (QM), a technique often used to statistically postprocess climate simulations, may generate physical inconsistency. This issue is investigated here by classifying physical inconsistency into two types. Type I refers to the attribution of an impossible value to a single variable, and type II refers to the breaking of a fixed intervariable relationship. Here QM is applied to relative humidity (RH) and its parent variables, namely, temperature, pressure, and specific humidity. Twelve sites representing various climate types across North America are investigated. Time series from an ensemble of ten 3-hourly simulations are postprocessed, with the CFSR reanalysis used as the reference product. For type I, results indicate that direct postprocessing of RH generates supersaturation values (>100%) at relatively small frequencies of occurrence. Generated supersaturation amplitudes exceed observed values in fog and clouds. Supersaturation values are generally more frequent and higher when RH is deduced from postprocessed parent variables. For type II, results show that univariate QM practically always breaks the intervariable thermodynamic relationship. Heuristic proxies are designed for comparing the initial bias with physical inconsistency of type II, and results suggest that QM generates a problem that is arguably lesser than the one it is intended to solve. When physical inconsistency is avoided by capping one humidity variable at its saturation level and deducing the other, statistical equivalence with the reference product remains much improved relative to the initial situation. A recommendation for climate services is to postprocess RH and deduce specific humidity rather than the opposite.
    publisherAmerican Meteorological Society
    titleTwo Types of Physical Inconsistency to Avoid with Univariate Quantile Mapping: A Case Study over North America Concerning Relative Humidity and Its Parent Variables
    typeJournal Paper
    journal volume57
    journal issue2
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-17-0177.1
    journal fristpage347
    journal lastpage364
    treeJournal of Applied Meteorology and Climatology:;2017:;volume 057:;issue 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian