YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Synoptic Characteristics of Surge-Producing Extratropical Cyclones along the Northeast Coast of the United States

    Source: Journal of Applied Meteorology and Climatology:;2017:;volume 057:;issue 001::page 171
    Author:
    Catalano, Arielle J.
    ,
    Broccoli, Anthony J.
    DOI: 10.1175/JAMC-D-17-0123.1
    Publisher: American Meteorological Society
    Abstract: AbstractExtratropical cyclones (ETCs) are responsible for most of the large storm-surge events in the northeastern United States. This study uses the ECMWF atmospheric reanalysis of the twentieth century (ERA-20C) and NOAA tide gauge data to examine the local, regional, and large-scale atmospheric circulation accompanying the 100 largest ETC-driven surge events at three locations along the northeastern coast of the United States: Sewells Point (Norfolk), Virginia; the Battery (New York City), New York; and Boston, Massachusetts. Results from a k-means cluster analysis indicate that the largest surges are generated when slowly propagating ETCs encounter a strong anticyclone, which produces a tighter pressure gradient and longer duration of onshore winds. The strength of the anticyclone is evident in the middle and upper troposphere where there are positive 500-hPa geopotential height anomalies overlying the surface anticyclone for the majority of clusters and nearly all of the five biggest surge events. Multiple clusters feature a slower-than-average storm and a strong anticyclone, indicating that various circulation scenarios can produce a large storm surge. This favorable environment for large surge events is influenced by well-known modes of climate variability including El Niño, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Pacific?North American (PNA) pattern. ETCs are more likely to produce a large surge during El Niño conditions, which have been shown to enhance the East Coast storm track. At Boston and the Battery, maximum surge occurs preferentially during the positive phase of PNA and the negative phases of AO/NAO.
    • Download: (2.088Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Synoptic Characteristics of Surge-Producing Extratropical Cyclones along the Northeast Coast of the United States

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261582
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorCatalano, Arielle J.
    contributor authorBroccoli, Anthony J.
    date accessioned2019-09-19T10:06:19Z
    date available2019-09-19T10:06:19Z
    date copyright10/31/2017 12:00:00 AM
    date issued2017
    identifier otherjamc-d-17-0123.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261582
    description abstractAbstractExtratropical cyclones (ETCs) are responsible for most of the large storm-surge events in the northeastern United States. This study uses the ECMWF atmospheric reanalysis of the twentieth century (ERA-20C) and NOAA tide gauge data to examine the local, regional, and large-scale atmospheric circulation accompanying the 100 largest ETC-driven surge events at three locations along the northeastern coast of the United States: Sewells Point (Norfolk), Virginia; the Battery (New York City), New York; and Boston, Massachusetts. Results from a k-means cluster analysis indicate that the largest surges are generated when slowly propagating ETCs encounter a strong anticyclone, which produces a tighter pressure gradient and longer duration of onshore winds. The strength of the anticyclone is evident in the middle and upper troposphere where there are positive 500-hPa geopotential height anomalies overlying the surface anticyclone for the majority of clusters and nearly all of the five biggest surge events. Multiple clusters feature a slower-than-average storm and a strong anticyclone, indicating that various circulation scenarios can produce a large storm surge. This favorable environment for large surge events is influenced by well-known modes of climate variability including El Niño, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Pacific?North American (PNA) pattern. ETCs are more likely to produce a large surge during El Niño conditions, which have been shown to enhance the East Coast storm track. At Boston and the Battery, maximum surge occurs preferentially during the positive phase of PNA and the negative phases of AO/NAO.
    publisherAmerican Meteorological Society
    titleSynoptic Characteristics of Surge-Producing Extratropical Cyclones along the Northeast Coast of the United States
    typeJournal Paper
    journal volume57
    journal issue1
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-17-0123.1
    journal fristpage171
    journal lastpage184
    treeJournal of Applied Meteorology and Climatology:;2017:;volume 057:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian