YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Climatological Beam Propagation Conditions for China’s Weather Radar Network

    Source: Journal of Applied Meteorology and Climatology:;2017:;volume 057:;issue 001::page 3
    Author:
    Wang, Hongyan
    ,
    Wang, Gaili
    ,
    Liu, Liping
    DOI: 10.1175/JAMC-D-17-0097.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe vertical refractivity gradient (VRG) is critical to weather radar beam propagation. The most common method of calculating beam paths uses the 4/3 Earth radius model, which corresponds to standard refraction conditions. In the present work, to better document propagation conditions for radar electromagnetic waves, which is essential for hydrology and numerical weather forecast models to more fully benefit from observations taken from the new-generation weather radar network in China, VRG spatial and temporal variations in the first kilometers above the surface are explored using 6-yr sounding observations. Under the effects of both regional climatic and topographic conditions, VRG values for most of the radars are generally smaller than those of the standard conditions for much of the year. There are similar or slightly larger values at only a few radar sites. Smaller VRG values are more frequent and widespread, especially during rainy seasons when weather radar observations are important. In such conditions, beam heights estimated using standard atmospheric refraction are overestimated relative to actual heights for most of the radars. Underestimates are much less common and of much shorter duration. However, height deviations are acceptable for being well within the uncertainty of radar echo height owing to the ~1° beamwidth. In coastal areas and the middle and lower reaches of the Yangtze River, radar observations should be applied with much more caution because of the greater risk of beam blockage and clutter contamination.
    • Download: (2.021Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Climatological Beam Propagation Conditions for China’s Weather Radar Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261571
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorWang, Hongyan
    contributor authorWang, Gaili
    contributor authorLiu, Liping
    date accessioned2019-09-19T10:06:16Z
    date available2019-09-19T10:06:16Z
    date copyright10/16/2017 12:00:00 AM
    date issued2017
    identifier otherjamc-d-17-0097.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261571
    description abstractAbstractThe vertical refractivity gradient (VRG) is critical to weather radar beam propagation. The most common method of calculating beam paths uses the 4/3 Earth radius model, which corresponds to standard refraction conditions. In the present work, to better document propagation conditions for radar electromagnetic waves, which is essential for hydrology and numerical weather forecast models to more fully benefit from observations taken from the new-generation weather radar network in China, VRG spatial and temporal variations in the first kilometers above the surface are explored using 6-yr sounding observations. Under the effects of both regional climatic and topographic conditions, VRG values for most of the radars are generally smaller than those of the standard conditions for much of the year. There are similar or slightly larger values at only a few radar sites. Smaller VRG values are more frequent and widespread, especially during rainy seasons when weather radar observations are important. In such conditions, beam heights estimated using standard atmospheric refraction are overestimated relative to actual heights for most of the radars. Underestimates are much less common and of much shorter duration. However, height deviations are acceptable for being well within the uncertainty of radar echo height owing to the ~1° beamwidth. In coastal areas and the middle and lower reaches of the Yangtze River, radar observations should be applied with much more caution because of the greater risk of beam blockage and clutter contamination.
    publisherAmerican Meteorological Society
    titleClimatological Beam Propagation Conditions for China’s Weather Radar Network
    typeJournal Paper
    journal volume57
    journal issue1
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-17-0097.1
    journal fristpage3
    journal lastpage14
    treeJournal of Applied Meteorology and Climatology:;2017:;volume 057:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian