Mechanism of Daytime Strong Winds on the Northern Slopes of Himalayas, near Mount Everest: Observation and SimulationSource: Journal of Applied Meteorology and Climatology:;2017:;volume 057:;issue 002::page 255Author:Sun, Fanglin
,
Ma, Yaoming
,
Hu, Zeyong
,
Li, Maoshan
,
Tartari, Gianni
,
Salerno, Franco
,
Gerken, Tobias
,
Bonasoni, Paolo
,
Cristofanelli, Paolo
,
Vuillermoz, Elisa
DOI: 10.1175/JAMC-D-16-0409.1Publisher: American Meteorological Society
Abstract: AbstractThe seasonal variability of strong afternoon winds in a northern Himalayan valley and their relationship with the synoptic circulation were examined using in situ meteorological data from March 2006 to February 2007 and numerical simulations. Meteorological observations were focused on the lower Rongbuk valley, on the north side of the Himalayas (4270 m MSL), where a wind profile radar was available. In the monsoon season (21 May?4 October), the strong afternoon wind was southeasterly, whereas it was southwesterly in the nonmonsoon season. Numerical simulations were performed using the Weather Research and Forecasting Model to investigate the mechanism causing these afternoon strong winds. The study found that during the nonmonsoon season the strong winds are produced by downward momentum transport from the westerly winds aloft, whereas those during the monsoon season are driven by the inflow into the Arun Valley east of Mount Everest. The air in the Arun Valley was found to be colder than that of the surroundings during the daytime, and there was a horizontal pressure gradient from the Arun Valley to Qomolangma Station (QOMS), China Academy of Sciences, at the 5200-m level. This explains the formation of the strong afternoon southeasterly wind over QOMS in the monsoon season. In the nonmonsoon season, the colder air from Arun Valley is confined below the ridge by westerly winds associated with the subtropical jet.
|
Collections
Show full item record
contributor author | Sun, Fanglin | |
contributor author | Ma, Yaoming | |
contributor author | Hu, Zeyong | |
contributor author | Li, Maoshan | |
contributor author | Tartari, Gianni | |
contributor author | Salerno, Franco | |
contributor author | Gerken, Tobias | |
contributor author | Bonasoni, Paolo | |
contributor author | Cristofanelli, Paolo | |
contributor author | Vuillermoz, Elisa | |
date accessioned | 2019-09-19T10:06:11Z | |
date available | 2019-09-19T10:06:11Z | |
date copyright | 11/2/2017 12:00:00 AM | |
date issued | 2017 | |
identifier other | jamc-d-16-0409.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4261556 | |
description abstract | AbstractThe seasonal variability of strong afternoon winds in a northern Himalayan valley and their relationship with the synoptic circulation were examined using in situ meteorological data from March 2006 to February 2007 and numerical simulations. Meteorological observations were focused on the lower Rongbuk valley, on the north side of the Himalayas (4270 m MSL), where a wind profile radar was available. In the monsoon season (21 May?4 October), the strong afternoon wind was southeasterly, whereas it was southwesterly in the nonmonsoon season. Numerical simulations were performed using the Weather Research and Forecasting Model to investigate the mechanism causing these afternoon strong winds. The study found that during the nonmonsoon season the strong winds are produced by downward momentum transport from the westerly winds aloft, whereas those during the monsoon season are driven by the inflow into the Arun Valley east of Mount Everest. The air in the Arun Valley was found to be colder than that of the surroundings during the daytime, and there was a horizontal pressure gradient from the Arun Valley to Qomolangma Station (QOMS), China Academy of Sciences, at the 5200-m level. This explains the formation of the strong afternoon southeasterly wind over QOMS in the monsoon season. In the nonmonsoon season, the colder air from Arun Valley is confined below the ridge by westerly winds associated with the subtropical jet. | |
publisher | American Meteorological Society | |
title | Mechanism of Daytime Strong Winds on the Northern Slopes of Himalayas, near Mount Everest: Observation and Simulation | |
type | Journal Paper | |
journal volume | 57 | |
journal issue | 2 | |
journal title | Journal of Applied Meteorology and Climatology | |
identifier doi | 10.1175/JAMC-D-16-0409.1 | |
journal fristpage | 255 | |
journal lastpage | 272 | |
tree | Journal of Applied Meteorology and Climatology:;2017:;volume 057:;issue 002 | |
contenttype | Fulltext |