YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation

    Source: Monthly Weather Review:;2017:;volume 146:;issue 001::page 373
    Author:
    Stroud, Jonathan R.
    ,
    Katzfuss, Matthias
    ,
    Wikle, Christopher K.
    DOI: 10.1175/MWR-D-16-0427.1
    Publisher: American Meteorological Society
    Abstract: AbstractThis paper proposes new methodology for sequential state and parameter estimation within the ensemble Kalman filter. The method is fully Bayesian and propagates the joint posterior distribution of states and parameters over time. To implement the method, the authors consider three representations of the marginal posterior distribution of the parameters: a grid-based approach, a Gaussian approximation, and a sequential importance sampling (SIR) approach with kernel resampling. In contrast to existing online parameter estimation algorithms, the new method explicitly accounts for parameter uncertainty and provides a formal way to combine information about the parameters from data at different time periods. The method is illustrated and compared to existing approaches using simulated and real data.
    • Download: (784.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261142
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorStroud, Jonathan R.
    contributor authorKatzfuss, Matthias
    contributor authorWikle, Christopher K.
    date accessioned2019-09-19T10:03:56Z
    date available2019-09-19T10:03:56Z
    date copyright11/7/2017 12:00:00 AM
    date issued2017
    identifier othermwr-d-16-0427.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261142
    description abstractAbstractThis paper proposes new methodology for sequential state and parameter estimation within the ensemble Kalman filter. The method is fully Bayesian and propagates the joint posterior distribution of states and parameters over time. To implement the method, the authors consider three representations of the marginal posterior distribution of the parameters: a grid-based approach, a Gaussian approximation, and a sequential importance sampling (SIR) approach with kernel resampling. In contrast to existing online parameter estimation algorithms, the new method explicitly accounts for parameter uncertainty and provides a formal way to combine information about the parameters from data at different time periods. The method is illustrated and compared to existing approaches using simulated and real data.
    publisherAmerican Meteorological Society
    titleA Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-16-0427.1
    journal fristpage373
    journal lastpage386
    treeMonthly Weather Review:;2017:;volume 146:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian