| contributor author | Stroud, Jonathan R. | |
| contributor author | Katzfuss, Matthias | |
| contributor author | Wikle, Christopher K. | |
| date accessioned | 2019-09-19T10:03:56Z | |
| date available | 2019-09-19T10:03:56Z | |
| date copyright | 11/7/2017 12:00:00 AM | |
| date issued | 2017 | |
| identifier other | mwr-d-16-0427.1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4261142 | |
| description abstract | AbstractThis paper proposes new methodology for sequential state and parameter estimation within the ensemble Kalman filter. The method is fully Bayesian and propagates the joint posterior distribution of states and parameters over time. To implement the method, the authors consider three representations of the marginal posterior distribution of the parameters: a grid-based approach, a Gaussian approximation, and a sequential importance sampling (SIR) approach with kernel resampling. In contrast to existing online parameter estimation algorithms, the new method explicitly accounts for parameter uncertainty and provides a formal way to combine information about the parameters from data at different time periods. The method is illustrated and compared to existing approaches using simulated and real data. | |
| publisher | American Meteorological Society | |
| title | A Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation | |
| type | Journal Paper | |
| journal volume | 146 | |
| journal issue | 1 | |
| journal title | Monthly Weather Review | |
| identifier doi | 10.1175/MWR-D-16-0427.1 | |
| journal fristpage | 373 | |
| journal lastpage | 386 | |
| tree | Monthly Weather Review:;2017:;volume 146:;issue 001 | |
| contenttype | Fulltext | |