Show simple item record

contributor authorStroud, Jonathan R.
contributor authorKatzfuss, Matthias
contributor authorWikle, Christopher K.
date accessioned2019-09-19T10:03:56Z
date available2019-09-19T10:03:56Z
date copyright11/7/2017 12:00:00 AM
date issued2017
identifier othermwr-d-16-0427.1.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261142
description abstractAbstractThis paper proposes new methodology for sequential state and parameter estimation within the ensemble Kalman filter. The method is fully Bayesian and propagates the joint posterior distribution of states and parameters over time. To implement the method, the authors consider three representations of the marginal posterior distribution of the parameters: a grid-based approach, a Gaussian approximation, and a sequential importance sampling (SIR) approach with kernel resampling. In contrast to existing online parameter estimation algorithms, the new method explicitly accounts for parameter uncertainty and provides a formal way to combine information about the parameters from data at different time periods. The method is illustrated and compared to existing approaches using simulated and real data.
publisherAmerican Meteorological Society
titleA Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation
typeJournal Paper
journal volume146
journal issue1
journal titleMonthly Weather Review
identifier doi10.1175/MWR-D-16-0427.1
journal fristpage373
journal lastpage386
treeMonthly Weather Review:;2017:;volume 146:;issue 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record