YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Orientation Analysis of Simulated Tornadic Debris

    Source: Journal of Atmospheric and Oceanic Technology:;2018:;volume 035:;issue 005::page 993
    Author:
    Umeyama, Arturo
    ,
    Cheong, Boon Leng
    ,
    Torres, Sebastián
    ,
    Bodine, David
    DOI: 10.1175/JTECH-D-17-0140.1
    Publisher: American Meteorological Society
    Abstract: AbstractPolarimetric weather radars are capable of detecting tornadic debris signatures (TDSs), which result from debris being lofted to the level of the radar beam and can be modulated by centrifuging and debris fallout. TDSs have been used in promising applications, such as enhanced tornado detection, improved warning and assessment of a potential tornado threat, and estimating tornado damage potential and intensity. Regions with negative differential reflectivity have been found in TDS observations but a physical explanation is yet to be determined. Some hypotheses suggest a common alignment of debris or non-Rayleigh scattering to be the cause. However, because it is inherently difficult and extremely dangerous to verify this, a simulated environment can aid in this context to reveal information that would otherwise be impossible to retrieve in practice. Under the simulation environment, the true construct of the debris is known, wherefrom the bulk distributions of position and orientation data can be extracted for statistical analysis. The primary focus of this work is to investigate the cause of nonzero mean values of in TDSs with simulated data from SimRadar, which is a polarimetric radar time series simulator developed for tornadic debris studies. The 6-degrees-of-freedom (DOF) model shows that for both small and large platelike debris, the debris face tends to have some common degree of alignment normal to the wind direction, which may be a plausible cause for the occurrence of negative in real polarimetric radar observations. Potential explanations for other hypotheses regarding tornado and debris dynamics are also briefly discussed.
    • Download: (11.67Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Orientation Analysis of Simulated Tornadic Debris

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4261062
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorUmeyama, Arturo
    contributor authorCheong, Boon Leng
    contributor authorTorres, Sebastián
    contributor authorBodine, David
    date accessioned2019-09-19T10:03:31Z
    date available2019-09-19T10:03:31Z
    date copyright2/28/2018 12:00:00 AM
    date issued2018
    identifier otherjtech-d-17-0140.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261062
    description abstractAbstractPolarimetric weather radars are capable of detecting tornadic debris signatures (TDSs), which result from debris being lofted to the level of the radar beam and can be modulated by centrifuging and debris fallout. TDSs have been used in promising applications, such as enhanced tornado detection, improved warning and assessment of a potential tornado threat, and estimating tornado damage potential and intensity. Regions with negative differential reflectivity have been found in TDS observations but a physical explanation is yet to be determined. Some hypotheses suggest a common alignment of debris or non-Rayleigh scattering to be the cause. However, because it is inherently difficult and extremely dangerous to verify this, a simulated environment can aid in this context to reveal information that would otherwise be impossible to retrieve in practice. Under the simulation environment, the true construct of the debris is known, wherefrom the bulk distributions of position and orientation data can be extracted for statistical analysis. The primary focus of this work is to investigate the cause of nonzero mean values of in TDSs with simulated data from SimRadar, which is a polarimetric radar time series simulator developed for tornadic debris studies. The 6-degrees-of-freedom (DOF) model shows that for both small and large platelike debris, the debris face tends to have some common degree of alignment normal to the wind direction, which may be a plausible cause for the occurrence of negative in real polarimetric radar observations. Potential explanations for other hypotheses regarding tornado and debris dynamics are also briefly discussed.
    publisherAmerican Meteorological Society
    titleOrientation Analysis of Simulated Tornadic Debris
    typeJournal Paper
    journal volume35
    journal issue5
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-17-0140.1
    journal fristpage993
    journal lastpage1010
    treeJournal of Atmospheric and Oceanic Technology:;2018:;volume 035:;issue 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian