Show simple item record

contributor authorUmeyama, Arturo
contributor authorCheong, Boon Leng
contributor authorTorres, Sebastián
contributor authorBodine, David
date accessioned2019-09-19T10:03:31Z
date available2019-09-19T10:03:31Z
date copyright2/28/2018 12:00:00 AM
date issued2018
identifier otherjtech-d-17-0140.1.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261062
description abstractAbstractPolarimetric weather radars are capable of detecting tornadic debris signatures (TDSs), which result from debris being lofted to the level of the radar beam and can be modulated by centrifuging and debris fallout. TDSs have been used in promising applications, such as enhanced tornado detection, improved warning and assessment of a potential tornado threat, and estimating tornado damage potential and intensity. Regions with negative differential reflectivity have been found in TDS observations but a physical explanation is yet to be determined. Some hypotheses suggest a common alignment of debris or non-Rayleigh scattering to be the cause. However, because it is inherently difficult and extremely dangerous to verify this, a simulated environment can aid in this context to reveal information that would otherwise be impossible to retrieve in practice. Under the simulation environment, the true construct of the debris is known, wherefrom the bulk distributions of position and orientation data can be extracted for statistical analysis. The primary focus of this work is to investigate the cause of nonzero mean values of in TDSs with simulated data from SimRadar, which is a polarimetric radar time series simulator developed for tornadic debris studies. The 6-degrees-of-freedom (DOF) model shows that for both small and large platelike debris, the debris face tends to have some common degree of alignment normal to the wind direction, which may be a plausible cause for the occurrence of negative in real polarimetric radar observations. Potential explanations for other hypotheses regarding tornado and debris dynamics are also briefly discussed.
publisherAmerican Meteorological Society
titleOrientation Analysis of Simulated Tornadic Debris
typeJournal Paper
journal volume35
journal issue5
journal titleJournal of Atmospheric and Oceanic Technology
identifier doi10.1175/JTECH-D-17-0140.1
journal fristpage993
journal lastpage1010
treeJournal of Atmospheric and Oceanic Technology:;2018:;volume 035:;issue 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record