YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Settlement and Vertical Load Transfer in Column-Supported Embankments

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 010
    Author:
    George M. Filz
    ,
    Joel A. Sloan
    ,
    Michael P. McGuire
    ,
    Miriam Smith
    ,
    James Collin
    DOI: 10.1061/(ASCE)GT.1943-5606.0002130
    Publisher: American Society of Civil Engineers
    Abstract: Column-supported embankments (CSEs) with or without a load-transfer platform (LTP) can reduce settlements, improve stability, and prevent damage to adjacent facilities when embankments are constructed on ground that would otherwise be too weak or compressible to support the new load. CSEs function by transferring the embankment load to the columns through stress redistribution above and below the foundation subgrade level. Mobilization of load-transfer mechanisms to the columns requires differential settlement at the base of the embankment between the stiff columns and foundation soils. This paper presents the load-displacement compatibility (LDC) analysis method, which estimates the transfer of vertical loads by (1) arching within the embankment fill, (2) the vertical component of tension developed in the geosynthetic reinforcement within the LTP, and (3) negative skin friction acting along the column. The LDC method incorporates the vertical displacements that accompany load transfer by considering nonlinear consolidation of the soft foundation soil, elastic compression of the columns, out-of-plane deformation of geosynthetic layers, and settlement of the embankment surface in compliance with the differential settlement at the embankment base. This paper also presents recommendations for estimating the critical height of the embankment, which is the minimum embankment height above the columns to avoid poor ride quality resulting from differential settlement at the surface of the embankment produced by differential settlements at the base of the embankment. Estimates of load transfer and reinforcement strain using the LDC method are compared to measurements from 15 full-scale embankments.
    • Download: (622.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Settlement and Vertical Load Transfer in Column-Supported Embankments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260479
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorGeorge M. Filz
    contributor authorJoel A. Sloan
    contributor authorMichael P. McGuire
    contributor authorMiriam Smith
    contributor authorJames Collin
    date accessioned2019-09-18T10:42:14Z
    date available2019-09-18T10:42:14Z
    date issued2019
    identifier other%28ASCE%29GT.1943-5606.0002130.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260479
    description abstractColumn-supported embankments (CSEs) with or without a load-transfer platform (LTP) can reduce settlements, improve stability, and prevent damage to adjacent facilities when embankments are constructed on ground that would otherwise be too weak or compressible to support the new load. CSEs function by transferring the embankment load to the columns through stress redistribution above and below the foundation subgrade level. Mobilization of load-transfer mechanisms to the columns requires differential settlement at the base of the embankment between the stiff columns and foundation soils. This paper presents the load-displacement compatibility (LDC) analysis method, which estimates the transfer of vertical loads by (1) arching within the embankment fill, (2) the vertical component of tension developed in the geosynthetic reinforcement within the LTP, and (3) negative skin friction acting along the column. The LDC method incorporates the vertical displacements that accompany load transfer by considering nonlinear consolidation of the soft foundation soil, elastic compression of the columns, out-of-plane deformation of geosynthetic layers, and settlement of the embankment surface in compliance with the differential settlement at the embankment base. This paper also presents recommendations for estimating the critical height of the embankment, which is the minimum embankment height above the columns to avoid poor ride quality resulting from differential settlement at the surface of the embankment produced by differential settlements at the base of the embankment. Estimates of load transfer and reinforcement strain using the LDC method are compared to measurements from 15 full-scale embankments.
    publisherAmerican Society of Civil Engineers
    titleSettlement and Vertical Load Transfer in Column-Supported Embankments
    typeJournal Paper
    journal volume145
    journal issue10
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002130
    page04019083
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian