YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Methods for Arrival Time Determination in Bender Element Tests for Time-Lapsed Vs Tomography

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 009
    Author:
    Yuxin Wu
    ,
    Jun Kang Chow
    ,
    Yu-Hsing Wang
    ,
    Ghee Leng Ooi
    DOI: 10.1061/(ASCE)GT.1943-5606.0002102
    Publisher: American Society of Civil Engineers
    Abstract: This paper examines and reports on two new methods, i.e., the Stockwell transform based (ST) method and self-healing cross-correlation (SC) method, in determining the S-wave arrival time for bender element tests, especially for Vs tomographic imaging. In the ST method, the Stockwell transform is first carried out to obtain a high-resolution time-frequency representation of the receiving signal; then, the energy in the frequencies around the resonant frequency is summed, followed calculation of the associated energy gradient. The maximum energy gradient is selected as the objective criterion to determine the arrival of the S-wave, since its arrival leads to a distinct amplitude increase and a notable change in the associated energy. The accuracy of this ST method is validated using both numerical and physical experiments. The ST method requires high computing power for signal processing; hence, the SC method is proposed to tackle this practical problem. Considering two consecutive measurements made by the same pair of bender elements in a time interval, subjected to only small changes in the stress states, both measurements should exhibit a similar waveform but with a minute time-shift. Therefore, the cross-correlation peak of the two consecutive measurements gives the travel time difference between them. The validity of the SC method is verified by a laboratory pile installation test equipped with a bender element sensing layer; and good agreement is found between the results obtained from the ST and SC methods. The strengths of these two methods enable us to objectively and automatically process the tremendous amount of bender element signals produced by the high-resolution time-lapsed Vs tomographic images, as demonstrated by process monitoring of the pile installation.
    • Download: (2.717Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Methods for Arrival Time Determination in Bender Element Tests for Time-Lapsed Vs Tomography

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260456
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorYuxin Wu
    contributor authorJun Kang Chow
    contributor authorYu-Hsing Wang
    contributor authorGhee Leng Ooi
    date accessioned2019-09-18T10:42:07Z
    date available2019-09-18T10:42:07Z
    date issued2019
    identifier other%28ASCE%29GT.1943-5606.0002102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260456
    description abstractThis paper examines and reports on two new methods, i.e., the Stockwell transform based (ST) method and self-healing cross-correlation (SC) method, in determining the S-wave arrival time for bender element tests, especially for Vs tomographic imaging. In the ST method, the Stockwell transform is first carried out to obtain a high-resolution time-frequency representation of the receiving signal; then, the energy in the frequencies around the resonant frequency is summed, followed calculation of the associated energy gradient. The maximum energy gradient is selected as the objective criterion to determine the arrival of the S-wave, since its arrival leads to a distinct amplitude increase and a notable change in the associated energy. The accuracy of this ST method is validated using both numerical and physical experiments. The ST method requires high computing power for signal processing; hence, the SC method is proposed to tackle this practical problem. Considering two consecutive measurements made by the same pair of bender elements in a time interval, subjected to only small changes in the stress states, both measurements should exhibit a similar waveform but with a minute time-shift. Therefore, the cross-correlation peak of the two consecutive measurements gives the travel time difference between them. The validity of the SC method is verified by a laboratory pile installation test equipped with a bender element sensing layer; and good agreement is found between the results obtained from the ST and SC methods. The strengths of these two methods enable us to objectively and automatically process the tremendous amount of bender element signals produced by the high-resolution time-lapsed Vs tomographic images, as demonstrated by process monitoring of the pile installation.
    publisherAmerican Society of Civil Engineers
    titleNew Methods for Arrival Time Determination in Bender Element Tests for Time-Lapsed Vs Tomography
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002102
    page04019049
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian