YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Closed-Form Models for Nonisothermal Effective Stress of Unsaturated Soils

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 009
    Author:
    Farshid Vahedifard
    ,
    Toan Duc Cao
    ,
    Ehsan Ghazanfari
    ,
    Sannith Kumar Thota
    DOI: 10.1061/(ASCE)GT.1943-5606.0002094
    Publisher: American Society of Civil Engineers
    Abstract: Effective stress is a critical factor controlling the mechanical behavior of unsaturated soils. There has been an increasing interest toward fundamental and applied research on emerging applications that involve unsaturated soils subjected to elevated temperatures. However, major gaps remain in the development of a unified model that can properly represent temperature dependency of effective stress in unsaturated soils. The main objective of this study is to develop closed-form equations to describe the effective stress of unsaturated soils under nonisothermal conditions. For this purpose, suction stress-based formulations are developed for representing temperature-dependent suction stress and effective stress of unsaturated soils. The formulations incorporate temperature-dependent moist air pressure and matric suction into a skeleton stress equation originally developed using volume averaging. A nonisothermal soil water retention curve (SWRC) is used to account for thermal effects on the adsorbed water, surface tension, contact angle, and enthalpy of immersion per unit area. The validity of the model is examined by comparing predicted suction stress values against experimental data reported in the literature for various soils ranging from clay to sand. The effective stress equations developed in this study can provide further insight into the behavior of unsaturated soils under nonisothermal conditions. The models can be readily incorporated in numerical and analytical methods, leading to more accurate modeling of unsaturated soils subjected to nonisothermal loading conditions.
    • Download: (682.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Closed-Form Models for Nonisothermal Effective Stress of Unsaturated Soils

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260447
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorFarshid Vahedifard
    contributor authorToan Duc Cao
    contributor authorEhsan Ghazanfari
    contributor authorSannith Kumar Thota
    date accessioned2019-09-18T10:42:05Z
    date available2019-09-18T10:42:05Z
    date issued2019
    identifier other%28ASCE%29GT.1943-5606.0002094.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260447
    description abstractEffective stress is a critical factor controlling the mechanical behavior of unsaturated soils. There has been an increasing interest toward fundamental and applied research on emerging applications that involve unsaturated soils subjected to elevated temperatures. However, major gaps remain in the development of a unified model that can properly represent temperature dependency of effective stress in unsaturated soils. The main objective of this study is to develop closed-form equations to describe the effective stress of unsaturated soils under nonisothermal conditions. For this purpose, suction stress-based formulations are developed for representing temperature-dependent suction stress and effective stress of unsaturated soils. The formulations incorporate temperature-dependent moist air pressure and matric suction into a skeleton stress equation originally developed using volume averaging. A nonisothermal soil water retention curve (SWRC) is used to account for thermal effects on the adsorbed water, surface tension, contact angle, and enthalpy of immersion per unit area. The validity of the model is examined by comparing predicted suction stress values against experimental data reported in the literature for various soils ranging from clay to sand. The effective stress equations developed in this study can provide further insight into the behavior of unsaturated soils under nonisothermal conditions. The models can be readily incorporated in numerical and analytical methods, leading to more accurate modeling of unsaturated soils subjected to nonisothermal loading conditions.
    publisherAmerican Society of Civil Engineers
    titleClosed-Form Models for Nonisothermal Effective Stress of Unsaturated Soils
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002094
    page04019053
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian