YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Thermal Loading Effects on Shaft Resistance of Energy Pile Using Laboratory-Scale Model

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 009
    Author:
    Saeed Yazdani
    ,
    Sam Helwany
    ,
    Guney Olgun
    DOI: 10.1061/(ASCE)GT.1943-5606.0002088
    Publisher: American Society of Civil Engineers
    Abstract: Cyclic temperature changes in an energy pile generate cyclic thermal expansive and contractive strains along the interface, which may impact both the serviceability and the ultimate pile resistance. This paper aims to assess induced changes in the shaft resistance of an energy pile after being subjected to different temperature variation, between 24°C and 34°C. This was done by measuring the load-settlement curve of a laboratory-scale floating energy pile installed in fully saturated normally-consolidated (NC) kaolin. A 10% relative settlement criterion was adopted to define the shaft resistance. Changes in temperature and pore pressure were also monitored in the surrounding clay using embedded thermocouples and a pore pressure transducer. Measurements during thermal loading showed that a positive excess pore water pressure was generated during the first thermal cycle followed by a negative pore pressure (suction) during the same cycle, while subsequent thermal cycles generated a cyclic pore pressure that remained negative regardless of the number of thermal loading cycles. It was also observed that piles subjected to heating exhibited greater shaft resistance than the reference pile tested at room temperature. Although the shaft resistance was considerably influenced by cyclic thermal loading, increasing the number of thermal cycles did not make appreciable differences in shaft resistance.
    • Download: (1.220Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Thermal Loading Effects on Shaft Resistance of Energy Pile Using Laboratory-Scale Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260442
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorSaeed Yazdani
    contributor authorSam Helwany
    contributor authorGuney Olgun
    date accessioned2019-09-18T10:42:04Z
    date available2019-09-18T10:42:04Z
    date issued2019
    identifier other%28ASCE%29GT.1943-5606.0002088.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260442
    description abstractCyclic temperature changes in an energy pile generate cyclic thermal expansive and contractive strains along the interface, which may impact both the serviceability and the ultimate pile resistance. This paper aims to assess induced changes in the shaft resistance of an energy pile after being subjected to different temperature variation, between 24°C and 34°C. This was done by measuring the load-settlement curve of a laboratory-scale floating energy pile installed in fully saturated normally-consolidated (NC) kaolin. A 10% relative settlement criterion was adopted to define the shaft resistance. Changes in temperature and pore pressure were also monitored in the surrounding clay using embedded thermocouples and a pore pressure transducer. Measurements during thermal loading showed that a positive excess pore water pressure was generated during the first thermal cycle followed by a negative pore pressure (suction) during the same cycle, while subsequent thermal cycles generated a cyclic pore pressure that remained negative regardless of the number of thermal loading cycles. It was also observed that piles subjected to heating exhibited greater shaft resistance than the reference pile tested at room temperature. Although the shaft resistance was considerably influenced by cyclic thermal loading, increasing the number of thermal cycles did not make appreciable differences in shaft resistance.
    publisherAmerican Society of Civil Engineers
    titleInvestigation of Thermal Loading Effects on Shaft Resistance of Energy Pile Using Laboratory-Scale Model
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002088
    page04019043
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian