YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Power Law Model to Predict Creep Movement and Creep Failure

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 009
    Author:
    Gang Bi
    ,
    Jean-Louis Briaud
    ,
    Marcelo Sanchez
    ,
    Mohsen Mahdavi Kharanaghi
    DOI: 10.1061/(ASCE)GT.1943-5606.0002081
    Publisher: American Society of Civil Engineers
    Abstract: Soils deform as a function of time because of the consolidation and the creep processes. Under undrained conditions, the consolidation process is prevented and the creep deformations are isolated. A series of unconsolidated undrained (UU) triaxial tests were conducted to investigate a creep deformation model and a creep failure model. The creep deformation model estimates the deformation as a function of time for a sustained stress level. It is a simple power law able to describe the creep measurements observed in the experiments. The creep failure model predicts the approximate time for the creep failure to occur under a sustained stress level. It is based on a strain-failure concept in which the failure time is defined as the time necessary to reach the failure strain. The main model parameters are the creep exponent and the strain to failure, which can be obtained from creep triaxial tests and from standard triaxial experiments, respectively.
    • Download: (2.088Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Power Law Model to Predict Creep Movement and Creep Failure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260433
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorGang Bi
    contributor authorJean-Louis Briaud
    contributor authorMarcelo Sanchez
    contributor authorMohsen Mahdavi Kharanaghi
    date accessioned2019-09-18T10:42:00Z
    date available2019-09-18T10:42:00Z
    date issued2019
    identifier other%28ASCE%29GT.1943-5606.0002081.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260433
    description abstractSoils deform as a function of time because of the consolidation and the creep processes. Under undrained conditions, the consolidation process is prevented and the creep deformations are isolated. A series of unconsolidated undrained (UU) triaxial tests were conducted to investigate a creep deformation model and a creep failure model. The creep deformation model estimates the deformation as a function of time for a sustained stress level. It is a simple power law able to describe the creep measurements observed in the experiments. The creep failure model predicts the approximate time for the creep failure to occur under a sustained stress level. It is based on a strain-failure concept in which the failure time is defined as the time necessary to reach the failure strain. The main model parameters are the creep exponent and the strain to failure, which can be obtained from creep triaxial tests and from standard triaxial experiments, respectively.
    publisherAmerican Society of Civil Engineers
    titlePower Law Model to Predict Creep Movement and Creep Failure
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002081
    page04019044
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian