YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large-Scale Modeling of Preshaking Effect on Liquefaction Resistance, Shear Wave Velocity, and CPT Tip Resistance of Clean Sand

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 010
    Author:
    R. Dobry
    ,
    S. Thevanayagam
    ,
    W. El-Sekelly
    ,
    T. Abdoun
    ,
    Q. Huang
    DOI: 10.1061/(ASCE)GT.1943-5606.0002080
    Publisher: American Society of Civil Engineers
    Abstract: The effect of preshaking and repeated liquefaction on liquefaction resistance was studied in a large-scale shaking table experiment, in which a sequence of 51 shakings was applied to the base of a 5-m uniform deposit of saturated clean Ottawa sand. Three event types were used in a very intense repeated pattern: mild preshaking Events A, stronger preshaking Events B, and extensive liquefaction Events C, with each Event C typically liquefying most or all of the deposit. Relative density, cone penetration test (CPT) tip resistance, and liquefaction resistance to Events A and B were found to increase significantly throughout the 51-shaking sequence, with the shear wave velocity (Vs) increasing slightly. However, the CPT tip resistance and liquefaction resistance decreased temporarily after each Event C, recovering rapidly with additional preshaking—presumably due to a decrease and subsequent increase in the soil lateral stresses. The results for the different shakings were compared with available CPT- and Vs-based field liquefaction charts, with and without accounting for the fact that the soil deposit was much younger than the case histories covered by the charts (age factor). The liquefaction response for Events A, B, and C was reasonably well predicted by the CPT chart when the age factor was considered, including Events A immediately after liquefaction by an Event C. The implications of the research were discussed for the geologic age, preshaking and liquefaction effects observed in the field, including reliquefaction response of the same site by milder aftershocks after the main earthquake shock.
    • Download: (2.264Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large-Scale Modeling of Preshaking Effect on Liquefaction Resistance, Shear Wave Velocity, and CPT Tip Resistance of Clean Sand

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4260432
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorR. Dobry
    contributor authorS. Thevanayagam
    contributor authorW. El-Sekelly
    contributor authorT. Abdoun
    contributor authorQ. Huang
    date accessioned2019-09-18T10:41:59Z
    date available2019-09-18T10:41:59Z
    date issued2019
    identifier other%28ASCE%29GT.1943-5606.0002080.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260432
    description abstractThe effect of preshaking and repeated liquefaction on liquefaction resistance was studied in a large-scale shaking table experiment, in which a sequence of 51 shakings was applied to the base of a 5-m uniform deposit of saturated clean Ottawa sand. Three event types were used in a very intense repeated pattern: mild preshaking Events A, stronger preshaking Events B, and extensive liquefaction Events C, with each Event C typically liquefying most or all of the deposit. Relative density, cone penetration test (CPT) tip resistance, and liquefaction resistance to Events A and B were found to increase significantly throughout the 51-shaking sequence, with the shear wave velocity (Vs) increasing slightly. However, the CPT tip resistance and liquefaction resistance decreased temporarily after each Event C, recovering rapidly with additional preshaking—presumably due to a decrease and subsequent increase in the soil lateral stresses. The results for the different shakings were compared with available CPT- and Vs-based field liquefaction charts, with and without accounting for the fact that the soil deposit was much younger than the case histories covered by the charts (age factor). The liquefaction response for Events A, B, and C was reasonably well predicted by the CPT chart when the age factor was considered, including Events A immediately after liquefaction by an Event C. The implications of the research were discussed for the geologic age, preshaking and liquefaction effects observed in the field, including reliquefaction response of the same site by milder aftershocks after the main earthquake shock.
    publisherAmerican Society of Civil Engineers
    titleLarge-Scale Modeling of Preshaking Effect on Liquefaction Resistance, Shear Wave Velocity, and CPT Tip Resistance of Clean Sand
    typeJournal Paper
    journal volume145
    journal issue10
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002080
    page04019065
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2019:;Volume ( 145 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian