YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of Compressible and Incompressible Flows Through Planar and Axisymmetric Abrupt Expansions

    Source: Journal of Fluids Engineering:;2019:;volume( 141 ):;issue: 011::page 111107
    Author:
    Nouri-Borujerdi, Ali
    ,
    Shafiei Ghazani, Ardalan
    DOI: 10.1115/1.4043497
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, compressible and incompressible flows through planar and axisymmetric sudden expansion channels are investigated numerically. Both laminar and turbulent flows are taken into consideration. Proper preconditioning in conjunction with a second-order accurate advection upstream splitting method (AUSM+-up) is employed. General equations for the loss coefficient and pressure ratio as a function of expansion ratio, Reynolds number, and the inlet Mach number are obtained. It is found that the reattachment length increases by increasing the Reynolds number. Changing the flow regime to turbulent results in a decreased reattachment length. Reattachment length increases slightly with a further increase in Reynolds number. At a given inlet Mach number, the maximum value of the ratio of the reattachment length to step height occurs at the expansion ratio of about two. Moreover, the pressure loss coefficient is a monotonic increasing function of expansion ratio and increases drastically by increasing Mach number. Increasing inlet Mach number from 0.1 to 0.2 results in an increase in pressure loss coefficient by less than 5%. However, increasing inlet Mach number from 0.4 to 0.6 results in an increase in loss coefficient by 70–100%, depending on the expansion ratio. It is revealed that increasing Reynolds number beyond a critical value results in the loss of symmetry for planar expansions. Critical Reynolds numbers change adversely to expansion ratio. The flow regains symmetry when the flow becomes turbulent. Similar bifurcating phenomena are observed beyond a certain Reynolds number in the turbulent regime.
    • Download: (908.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of Compressible and Incompressible Flows Through Planar and Axisymmetric Abrupt Expansions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259295
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorNouri-Borujerdi, Ali
    contributor authorShafiei Ghazani, Ardalan
    date accessioned2019-09-18T09:08:17Z
    date available2019-09-18T09:08:17Z
    date copyright5/8/2019 12:00:00 AM
    date issued2019
    identifier issn0098-2202
    identifier otherfe_141_11_111107
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259295
    description abstractIn this paper, compressible and incompressible flows through planar and axisymmetric sudden expansion channels are investigated numerically. Both laminar and turbulent flows are taken into consideration. Proper preconditioning in conjunction with a second-order accurate advection upstream splitting method (AUSM+-up) is employed. General equations for the loss coefficient and pressure ratio as a function of expansion ratio, Reynolds number, and the inlet Mach number are obtained. It is found that the reattachment length increases by increasing the Reynolds number. Changing the flow regime to turbulent results in a decreased reattachment length. Reattachment length increases slightly with a further increase in Reynolds number. At a given inlet Mach number, the maximum value of the ratio of the reattachment length to step height occurs at the expansion ratio of about two. Moreover, the pressure loss coefficient is a monotonic increasing function of expansion ratio and increases drastically by increasing Mach number. Increasing inlet Mach number from 0.1 to 0.2 results in an increase in pressure loss coefficient by less than 5%. However, increasing inlet Mach number from 0.4 to 0.6 results in an increase in loss coefficient by 70–100%, depending on the expansion ratio. It is revealed that increasing Reynolds number beyond a critical value results in the loss of symmetry for planar expansions. Critical Reynolds numbers change adversely to expansion ratio. The flow regains symmetry when the flow becomes turbulent. Similar bifurcating phenomena are observed beyond a certain Reynolds number in the turbulent regime.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleSimulation of Compressible and Incompressible Flows Through Planar and Axisymmetric Abrupt Expansions
    typeJournal Paper
    journal volume141
    journal issue11
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4043497
    journal fristpage111107
    journal lastpage111107-11
    treeJournal of Fluids Engineering:;2019:;volume( 141 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian