YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Kinematics of Containment for N-Dimensional Ellipsoids

    Source: Journal of Mechanisms and Robotics:;2019:;volume( 011 ):;issue: 004::page 41005
    Author:
    Ruan, Sipu
    ,
    Ding, Jianzhong
    ,
    Ma, Qianli
    ,
    Chirikjian, Gregory S.
    DOI: 10.1115/1.4043458
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Knowing the set of allowable motions of a convex body moving inside a slightly larger one is useful in applications such as automated assembly mechanisms, robot motion planning, etc. The theory behind this is called the “kinematics of containment (KC).” In this article, we show that when the convex bodies are ellipsoids, lower bounds of the KC volume can be constructed using simple convex constraint equations. In particular, we study a subset of the allowable motions for an n-dimensional ellipsoid being fully contained in another. The problem is addressed in both algebraic and geometric ways, and two lower bounds of the allowable motions are proposed. Containment checking processes for a specific configuration of the moving ellipsoid and the calculations of the volume of the proposed lower bounds in the configuration space (C-space) are introduced. Examples for the proposed lower bounds in the 2D and 3D Euclidean space are implemented, and the corresponding volumes in C-space are compared with different shapes of the ellipsoids. Practical applications using the proposed theories in motion planning problems and parts-handling mechanisms are then discussed.
    • Download: (738.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Kinematics of Containment for N-Dimensional Ellipsoids

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259251
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorRuan, Sipu
    contributor authorDing, Jianzhong
    contributor authorMa, Qianli
    contributor authorChirikjian, Gregory S.
    date accessioned2019-09-18T09:08:04Z
    date available2019-09-18T09:08:04Z
    date copyright5/17/2019 12:00:00 AM
    date issued2019
    identifier issn1942-4302
    identifier otherjmr_11_4_041005
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259251
    description abstractKnowing the set of allowable motions of a convex body moving inside a slightly larger one is useful in applications such as automated assembly mechanisms, robot motion planning, etc. The theory behind this is called the “kinematics of containment (KC).” In this article, we show that when the convex bodies are ellipsoids, lower bounds of the KC volume can be constructed using simple convex constraint equations. In particular, we study a subset of the allowable motions for an n-dimensional ellipsoid being fully contained in another. The problem is addressed in both algebraic and geometric ways, and two lower bounds of the allowable motions are proposed. Containment checking processes for a specific configuration of the moving ellipsoid and the calculations of the volume of the proposed lower bounds in the configuration space (C-space) are introduced. Examples for the proposed lower bounds in the 2D and 3D Euclidean space are implemented, and the corresponding volumes in C-space are compared with different shapes of the ellipsoids. Practical applications using the proposed theories in motion planning problems and parts-handling mechanisms are then discussed.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleThe Kinematics of Containment for N-Dimensional Ellipsoids
    typeJournal Paper
    journal volume11
    journal issue4
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4043458
    journal fristpage41005
    journal lastpage041005-12
    treeJournal of Mechanisms and Robotics:;2019:;volume( 011 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian