YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of TiO2–SiO2–MgO and SiO2–MgO–Al2O3-Based Submerged Arc Fluxes for Multipass Bead on Plate Pipeline Steel Welds

    Source: Journal of Pressure Vessel Technology:;2019:;volume( 141 ):;issue: 004::page 41402
    Author:
    Sharma, Lochan
    ,
    Chhibber, Rahul
    DOI: 10.1115/1.4043375
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: High strength low alloy steels are extensively used in different applications like oil and gas transmission line pipes, pressure vessels and offshore oil drilling platforms. Submerged arc welding (SAW) is mainly used to weld high thickness steel plates. Flux composition and welding parameters play an important role in determining the adequate quality and mechanical properties of the weld. Agglomerated fluxes were formulated based on TiO2–SiO2–MgO and SiO2–MgO–Al2O3 flux system using constrained mixture design and extreme vertices design approach. The chemical compositions of the bead on a plate have been studied using formulated fluxes. Twenty-one beads on plates were applied using submerged arc welding process keeping the parameters: current, voltage, and welding speed constant. Regression models were developed for bead on plate content in terms of individual, binary, and ternary mixture flux constituents for submerged arc multipass bead on plate deposition for pipeline steel (API 5 L X70). In the present study, chemical composition, grain size, and microhardness properties of the multipass bead on a plate (for API 5 L X70 grade pipeline) were optimized using multi-objective optimization approach.
    • Download: (2.089Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of TiO2–SiO2–MgO and SiO2–MgO–Al2O3-Based Submerged Arc Fluxes for Multipass Bead on Plate Pipeline Steel Welds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259184
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorSharma, Lochan
    contributor authorChhibber, Rahul
    date accessioned2019-09-18T09:07:42Z
    date available2019-09-18T09:07:42Z
    date copyright5/8/2019 12:00:00 AM
    date issued2019
    identifier issn0094-9930
    identifier otherpvt_141_04_041402
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259184
    description abstractHigh strength low alloy steels are extensively used in different applications like oil and gas transmission line pipes, pressure vessels and offshore oil drilling platforms. Submerged arc welding (SAW) is mainly used to weld high thickness steel plates. Flux composition and welding parameters play an important role in determining the adequate quality and mechanical properties of the weld. Agglomerated fluxes were formulated based on TiO2–SiO2–MgO and SiO2–MgO–Al2O3 flux system using constrained mixture design and extreme vertices design approach. The chemical compositions of the bead on a plate have been studied using formulated fluxes. Twenty-one beads on plates were applied using submerged arc welding process keeping the parameters: current, voltage, and welding speed constant. Regression models were developed for bead on plate content in terms of individual, binary, and ternary mixture flux constituents for submerged arc multipass bead on plate deposition for pipeline steel (API 5 L X70). In the present study, chemical composition, grain size, and microhardness properties of the multipass bead on a plate (for API 5 L X70 grade pipeline) were optimized using multi-objective optimization approach.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleDesign of TiO2–SiO2–MgO and SiO2–MgO–Al2O3-Based Submerged Arc Fluxes for Multipass Bead on Plate Pipeline Steel Welds
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4043375
    journal fristpage41402
    journal lastpage041402-12
    treeJournal of Pressure Vessel Technology:;2019:;volume( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian