YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Prediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine

    Source: Journal of Energy Resources Technology:;2019:;volume 141:;issue 010::page 102201
    Author:
    Yue, Zongyu
    ,
    Edwards, K. Dean
    ,
    Sluders, C. Scott
    ,
    Som, Sibendu
    DOI: 10.1115/1.4043393
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Engine knock remains one of the major barriers to further improve the thermal efficiency of spark-ignition (SI) engines. SI engine is usually operated at knock-limited spark advance (KLSA) to achieve possibly maximum efficiency with given engine hardware and fuel properties. Co-optimization of fuels and engines is promising to improve engine efficiency, and predictive computational fluid dynamics (CFD) models can be used to facilitate this process. However, cyclic variability of SI engine demands that multicycle results are required to capture the extreme conditions. In addition, Mach Courant–Friedrichs–Lewy (CFL) number of 1 is desired to accurately predict the knock intensity (KI), resulting in unaffordable computational cost. In this study, a new approach to numerically predict KLSA using large Mach CFL of 50 with ten consecutive cycle simulation is proposed. This approach is validated against the experimental data for a boosted SI engine at multiple loads and spark timings with good agreements in terms of cylinder pressure, combustion phasing, and cyclic variation. Engine knock is predicted with early spark timing, indicated by significant pressure oscillation and end-gas heat release. Maximum amplitude of pressure oscillation analysis is performed to quantify the KI, and the slope change point in KI extrema is used to indicate the KLSA accurately. Using a smaller Mach CFL number of 5 also results in the same conclusions, thus demonstrating that this approach is insensitive to the Mach CFL number. The use of large Mach CFL number allows us to achieve fast turn-around time for multicycle engine CFD simulations.
    • Download: (506.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Prediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259158
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorYue, Zongyu
    contributor authorEdwards, K. Dean
    contributor authorSluders, C. Scott
    contributor authorSom, Sibendu
    date accessioned2019-09-18T09:07:34Z
    date available2019-09-18T09:07:34Z
    date copyright4/18/2019 12:00:00 AM
    date issued2019
    identifier issn0195-0738
    identifier otherjert_141_10_102201
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259158
    description abstractEngine knock remains one of the major barriers to further improve the thermal efficiency of spark-ignition (SI) engines. SI engine is usually operated at knock-limited spark advance (KLSA) to achieve possibly maximum efficiency with given engine hardware and fuel properties. Co-optimization of fuels and engines is promising to improve engine efficiency, and predictive computational fluid dynamics (CFD) models can be used to facilitate this process. However, cyclic variability of SI engine demands that multicycle results are required to capture the extreme conditions. In addition, Mach Courant–Friedrichs–Lewy (CFL) number of 1 is desired to accurately predict the knock intensity (KI), resulting in unaffordable computational cost. In this study, a new approach to numerically predict KLSA using large Mach CFL of 50 with ten consecutive cycle simulation is proposed. This approach is validated against the experimental data for a boosted SI engine at multiple loads and spark timings with good agreements in terms of cylinder pressure, combustion phasing, and cyclic variation. Engine knock is predicted with early spark timing, indicated by significant pressure oscillation and end-gas heat release. Maximum amplitude of pressure oscillation analysis is performed to quantify the KI, and the slope change point in KI extrema is used to indicate the KLSA accurately. Using a smaller Mach CFL number of 5 also results in the same conclusions, thus demonstrating that this approach is insensitive to the Mach CFL number. The use of large Mach CFL number allows us to achieve fast turn-around time for multicycle engine CFD simulations.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titlePrediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine
    typeJournal Paper
    journal volume141
    journal issue10
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4043393
    journal fristpage102201
    journal lastpage102201-8
    treeJournal of Energy Resources Technology:;2019:;volume 141:;issue 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian