YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Mechanistic Model of Liquid Film Movements in Pipe Elbows for Annular Flow

    Source: Journal of Heat Transfer:;2019:;volume( 141 ):;issue: 006::page 62002
    Author:
    Liu, Mingyang
    ,
    Liu, Haixiao
    DOI: 10.1115/1.4043299
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: A mechanistic model of film movements is developed based on the treatments on the annular flow field. The initial conditions at the inlet are determined by adopting a validated film thickness correlation of fully developed upward annular flow in vertical pipes. The overall pressure gradient is assumed to be uniform all along the axial distance within the elbow and the static pressure is also uniform on every cross section. The axial velocities of the liquid film and the core region are both uniform on the cross-sectional plane. The droplets are assumed to travel in straight lines normal to the inlet plane until colliding on and absorbed by the liquid film surface. The liquid film motion is divided into the axial and radial directions. Energy conservation law and Newton's second law are, respectively, used in the two directions. The film motion calculation is executed by using a discrete method with an explicit solution. The average film thickness and the circumferential thickness distribution on an arbitrary cross section can be obtained for the given flow conditions. The mechanistic model is verified by comparing the predicted circumferential distribution of film thickness with three series of experimental data from the literature. Parametric studies are also conducted to investigate the parameter effects and the range of application. The present work proves that the variation and distribution of film thickness within the elbows can be efficiently described by the mechanistic model.
    • Download: (4.707Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Mechanistic Model of Liquid Film Movements in Pipe Elbows for Annular Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259098
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorLiu, Mingyang
    contributor authorLiu, Haixiao
    date accessioned2019-09-18T09:07:15Z
    date available2019-09-18T09:07:15Z
    date copyright4/17/2019 12:00:00 AM
    date issued2019
    identifier issn0022-1481
    identifier otherht_141_06_062002
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259098
    description abstractA mechanistic model of film movements is developed based on the treatments on the annular flow field. The initial conditions at the inlet are determined by adopting a validated film thickness correlation of fully developed upward annular flow in vertical pipes. The overall pressure gradient is assumed to be uniform all along the axial distance within the elbow and the static pressure is also uniform on every cross section. The axial velocities of the liquid film and the core region are both uniform on the cross-sectional plane. The droplets are assumed to travel in straight lines normal to the inlet plane until colliding on and absorbed by the liquid film surface. The liquid film motion is divided into the axial and radial directions. Energy conservation law and Newton's second law are, respectively, used in the two directions. The film motion calculation is executed by using a discrete method with an explicit solution. The average film thickness and the circumferential thickness distribution on an arbitrary cross section can be obtained for the given flow conditions. The mechanistic model is verified by comparing the predicted circumferential distribution of film thickness with three series of experimental data from the literature. Parametric studies are also conducted to investigate the parameter effects and the range of application. The present work proves that the variation and distribution of film thickness within the elbows can be efficiently described by the mechanistic model.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleA Mechanistic Model of Liquid Film Movements in Pipe Elbows for Annular Flow
    typeJournal Paper
    journal volume141
    journal issue6
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4043299
    journal fristpage62002
    journal lastpage062002-27
    treeJournal of Heat Transfer:;2019:;volume( 141 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian