YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Problem Class With Combined Architecture, Plant, and Control Design Applied to Vehicle Suspensions

    Source: Journal of Mechanical Design:;2019:;volume( 141 ):;issue: 010::page 101401
    Author:
    Herber, Daniel R.
    ,
    Allison, James T.
    DOI: 10.1115/1.4043312
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Here we describe a problem class with combined architecture, plant, and control design for dynamic engineering systems. The design problem class is characterized by architectures comprised of linear physical elements and nested co-design optimization problems employing linear-quadratic dynamic optimization. The select problem class leverages a number of existing theory and tools and is particularly effective due to the symbiosis between labeled graph representations of architectures, dynamic models constructed from linear physical elements, linear-quadratic dynamic optimization, and the nested co-design solution strategy. A vehicle suspension case study is investigated and a specifically constructed architecture, plant, and control design problem is described. The result was the automated generation and co-design problem evaluation of 4374 unique suspension architectures. The results demonstrate that changes to the vehicle suspension architecture can result in improved performance, but at the cost of increased mechanical complexity. Furthermore, the case study highlights a number of challenges associated with finding solutions to the considered class of design problems. One such challenge is the requirement to use simplified design problem elements/models; thus, the goal of these early-stage studies are to identify new architectures that are worth investigating more deeply. The results of higher-fidelity studies on a subset of high-performance architectures can then be used to select a final system architecture. In many aspects, the described problem class is the simplest case applicable to graph-representable, dynamic engineering systems.
    • Download: (1.009Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Problem Class With Combined Architecture, Plant, and Control Design Applied to Vehicle Suspensions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259089
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorHerber, Daniel R.
    contributor authorAllison, James T.
    date accessioned2019-09-18T09:07:13Z
    date available2019-09-18T09:07:13Z
    date copyright5/13/2019 12:00:00 AM
    date issued2019
    identifier issn1050-0472
    identifier othermd_141_10_101401
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259089
    description abstractHere we describe a problem class with combined architecture, plant, and control design for dynamic engineering systems. The design problem class is characterized by architectures comprised of linear physical elements and nested co-design optimization problems employing linear-quadratic dynamic optimization. The select problem class leverages a number of existing theory and tools and is particularly effective due to the symbiosis between labeled graph representations of architectures, dynamic models constructed from linear physical elements, linear-quadratic dynamic optimization, and the nested co-design solution strategy. A vehicle suspension case study is investigated and a specifically constructed architecture, plant, and control design problem is described. The result was the automated generation and co-design problem evaluation of 4374 unique suspension architectures. The results demonstrate that changes to the vehicle suspension architecture can result in improved performance, but at the cost of increased mechanical complexity. Furthermore, the case study highlights a number of challenges associated with finding solutions to the considered class of design problems. One such challenge is the requirement to use simplified design problem elements/models; thus, the goal of these early-stage studies are to identify new architectures that are worth investigating more deeply. The results of higher-fidelity studies on a subset of high-performance architectures can then be used to select a final system architecture. In many aspects, the described problem class is the simplest case applicable to graph-representable, dynamic engineering systems.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleA Problem Class With Combined Architecture, Plant, and Control Design Applied to Vehicle Suspensions
    typeJournal Paper
    journal volume141
    journal issue10
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4043312
    journal fristpage101401
    journal lastpage101401-11
    treeJournal of Mechanical Design:;2019:;volume( 141 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian