YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    In Vivo Layer-Specific Mechanical Characterization of Porcine Stomach Tissue Using a Customized Ultrasound Elastography System

    Source: Journal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 010::page 101004
    Author:
    Dargar, Saurabh
    ,
    Rahul,
    ,
    Kruger, Uwe
    ,
    De, Suvranu
    DOI: 10.1115/1.4043259
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents in vivo mechanical characterization of the muscularis, submucosa, and mucosa of the porcine stomach wall under large deformation loading. This is particularly important for the development of gastrointestinal pathology-specific surgical intervention techniques. The study is based on testing the cardiac and fundic glandular stomach regions using a custom-developed compression ultrasound elastography system. Particular attention has been paid to elucidate the heterogeneity and anisotropy of tissue response. A Fung hyperelastic material model has been used to model the mechanical response of each tissue layer. A univariate analysis comparing the initial shear moduli of the three layers indicates that the muscularis (5.69 ± 4.06 kPa) is the stiffest followed by the submucosa (3.04 ± 3.32 kPa) and the mucosa (0.56 ± 0.28 kPa). The muscularis is found to be strongly distinguishable from the mucosa tissue in the cardiac and fundic regions based on a multivariate discriminant analysis. The cardiac muscularis is observed to be stiffer than the fundic muscularis tissue (shear moduli of 7.96 ± 3.82 kPa versus 3.42 ± 2.96 kPa), more anisotropic (anisotropic parameter of 2.21 ± 0.77 versus 1.41 ± 0.38), and strongly distinguishable from its fundic counterpart. The results are consistent with the tissue morphology and are in accordance with our previous ex vivo tissue study. Finally, a univariate comparison of the in vivo and ex vivo initial shear moduli for each layer shows that the muscularis and submucosa tissues are softer while in vivo, but the mucosa tissue is stiffer while in vivo. The results concerning the mechanical properties highlight the inhomogeneity and anisotropy of multilayer stomach tissue.
    • Download: (1.902Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      In Vivo Layer-Specific Mechanical Characterization of Porcine Stomach Tissue Using a Customized Ultrasound Elastography System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259038
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorDargar, Saurabh
    contributor authorRahul,
    contributor authorKruger, Uwe
    contributor authorDe, Suvranu
    date accessioned2019-09-18T09:06:58Z
    date available2019-09-18T09:06:58Z
    date copyright7/11/2019 12:00:00 AM
    date issued2019
    identifier issn0148-0731
    identifier otherbio_141_10_101004
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259038
    description abstractThis paper presents in vivo mechanical characterization of the muscularis, submucosa, and mucosa of the porcine stomach wall under large deformation loading. This is particularly important for the development of gastrointestinal pathology-specific surgical intervention techniques. The study is based on testing the cardiac and fundic glandular stomach regions using a custom-developed compression ultrasound elastography system. Particular attention has been paid to elucidate the heterogeneity and anisotropy of tissue response. A Fung hyperelastic material model has been used to model the mechanical response of each tissue layer. A univariate analysis comparing the initial shear moduli of the three layers indicates that the muscularis (5.69 ± 4.06 kPa) is the stiffest followed by the submucosa (3.04 ± 3.32 kPa) and the mucosa (0.56 ± 0.28 kPa). The muscularis is found to be strongly distinguishable from the mucosa tissue in the cardiac and fundic regions based on a multivariate discriminant analysis. The cardiac muscularis is observed to be stiffer than the fundic muscularis tissue (shear moduli of 7.96 ± 3.82 kPa versus 3.42 ± 2.96 kPa), more anisotropic (anisotropic parameter of 2.21 ± 0.77 versus 1.41 ± 0.38), and strongly distinguishable from its fundic counterpart. The results are consistent with the tissue morphology and are in accordance with our previous ex vivo tissue study. Finally, a univariate comparison of the in vivo and ex vivo initial shear moduli for each layer shows that the muscularis and submucosa tissues are softer while in vivo, but the mucosa tissue is stiffer while in vivo. The results concerning the mechanical properties highlight the inhomogeneity and anisotropy of multilayer stomach tissue.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleIn Vivo Layer-Specific Mechanical Characterization of Porcine Stomach Tissue Using a Customized Ultrasound Elastography System
    typeJournal Paper
    journal volume141
    journal issue10
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4043259
    journal fristpage101004
    journal lastpage101004-10
    treeJournal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian