YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Aspect Ratio on Compressor Performance

    Source: Journal of Turbomachinery:;2019:;volume 141:;issue 008::page 81011
    Author:
    To, Ho-On
    ,
    Miller, Robert J.
    DOI: 10.1115/1.4043219
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: The optimum aspect ratio at which maximum efficiency occurs is relatively low, typically between 1 and 1.5. At these aspect ratios, inaccuracies inherently exist in the decomposition of the flow field into freestream and endwall components due to the absence of a discernible freestream. In this paper, a unique approach is taken: a “linear repeating stage” concept is used in conjunction with a novel way of defining the freestream flow. Through this approach, physically accurate decomposition of the flow field for aspect ratios as low as ∼0.5 can be achieved. This ability to accurately decompose the flow leads to several key findings. First, the endwall flow is found to be dependent on static pressure rise coefficient and endwall geometry, but independent of the aspect ratio. Second, the commonly accepted relationship that endwall loss coefficient varies inversely with the aspect ratio is shown to be physically inaccurate. Instead, a new term, which the authors refer to as the “effective aspect ratio,” should replace the term “aspect ratio.” Moreover, not doing so can result in efficiency errors of ∼0.6% at low aspect ratios. Finally, there exists a low aspect ratio limit below which the two endwall flows interact causing a large separation to occur along the span. From these findings, a low-order model is developed to model the effect of varying aspect ratio on compressor performance. The last section of the paper uses this low-order model and a simple analytical model to show that to a first order, the optimum aspect ratio is just a function of the loss generated by the endwalls at zero clearance and the rate of change in profile loss due to blade thickness. This means that once the endwall configuration has been selected, i.e., cantilever or shroud, the blade thickness sets the optimum aspect ratio.
    • Download: (4.871Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Aspect Ratio on Compressor Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259014
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorTo, Ho-On
    contributor authorMiller, Robert J.
    date accessioned2019-09-18T09:06:52Z
    date available2019-09-18T09:06:52Z
    date copyright4/15/2019 12:00:00 AM
    date issued2019
    identifier issn0889-504X
    identifier otherturbo_141_8_081011
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259014
    description abstractThe optimum aspect ratio at which maximum efficiency occurs is relatively low, typically between 1 and 1.5. At these aspect ratios, inaccuracies inherently exist in the decomposition of the flow field into freestream and endwall components due to the absence of a discernible freestream. In this paper, a unique approach is taken: a “linear repeating stage” concept is used in conjunction with a novel way of defining the freestream flow. Through this approach, physically accurate decomposition of the flow field for aspect ratios as low as ∼0.5 can be achieved. This ability to accurately decompose the flow leads to several key findings. First, the endwall flow is found to be dependent on static pressure rise coefficient and endwall geometry, but independent of the aspect ratio. Second, the commonly accepted relationship that endwall loss coefficient varies inversely with the aspect ratio is shown to be physically inaccurate. Instead, a new term, which the authors refer to as the “effective aspect ratio,” should replace the term “aspect ratio.” Moreover, not doing so can result in efficiency errors of ∼0.6% at low aspect ratios. Finally, there exists a low aspect ratio limit below which the two endwall flows interact causing a large separation to occur along the span. From these findings, a low-order model is developed to model the effect of varying aspect ratio on compressor performance. The last section of the paper uses this low-order model and a simple analytical model to show that to a first order, the optimum aspect ratio is just a function of the loss generated by the endwalls at zero clearance and the rate of change in profile loss due to blade thickness. This means that once the endwall configuration has been selected, i.e., cantilever or shroud, the blade thickness sets the optimum aspect ratio.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleThe Effect of Aspect Ratio on Compressor Performance
    typeJournal Paper
    journal volume141
    journal issue8
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4043219
    journal fristpage81011
    journal lastpage081011-12
    treeJournal of Turbomachinery:;2019:;volume 141:;issue 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian