YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Verification and Validation of SuperMC3.2 Using VENUS-3 Benchmark Experiments

    Source: Journal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 004::page 41402
    Author:
    Baidoo, I. K.
    ,
    Zou, J.
    ,
    Li, B.
    ,
    Song, J.
    ,
    Wu, B.
    ,
    Yang, Q.
    ,
    Zhao, Z.
    DOI: 10.1115/1.4043100
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Methodological processes for nuclear power plant (NPP) pressure vessels' (PV) neutron fluence rate determination take the form of experimental measurement or theoretical calculations. However, the process of experimental measurement takes longer periods, as it requires the incorporation of surveillance capsules into a PV system undergoing normal NPP operation. Therefore, strong reliance on computation and modeling of radiation-induced degradation is given much attention. In this work, the VENUS-3 benchmark has been analyzed using SuperMC code, with the intention of validating SuperMC for accurate reactor neutronics; dosimetry response calculations for in-core/ex-core structural components, particularly with respect to the VENUS-3 configuration type pressurized water reactors (PWRs). In this work, complete three-dimensional (3D) geometry including the source modeling for VENUS-3 facility has been developed with SuperMC. Neutron transport and calculations of equivalent fission flux for the experimental target quantities, 115In (n, n′), 58Ni (n, p), and 27Al (n, α), are also achieved. The calculation results show good agreement with the experimental measurement. The greater majority of the calculated values (C/E) were within the required accuracy of ±10% for reactor components' dosimetry calculations. Most of the calculated values were contained within 5% deviation from the experimental data. Additional calculations and detailed analysis for fast neutron flux distribution and iron displacement per atom rate (dpa/s), including the characteristic effect of partial length shielded assembly (PLSA) on VENUS-3 core barrel, are also discussed. It is therefore evidenced that the effectiveness of SuperMC code for in-core/ex-core reactor neutronics computations has been convincingly demonstrated through the VENUS-3 benchmark testing.
    • Download: (3.249Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Verification and Validation of SuperMC3.2 Using VENUS-3 Benchmark Experiments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258927
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorBaidoo, I. K.
    contributor authorZou, J.
    contributor authorLi, B.
    contributor authorSong, J.
    contributor authorWu, B.
    contributor authorYang, Q.
    contributor authorZhao, Z.
    date accessioned2019-09-18T09:06:24Z
    date available2019-09-18T09:06:24Z
    date copyright7/19/2019 12:00:00 AM
    date issued2019
    identifier issn2332-8983
    identifier otherners_005_04_041402
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258927
    description abstractMethodological processes for nuclear power plant (NPP) pressure vessels' (PV) neutron fluence rate determination take the form of experimental measurement or theoretical calculations. However, the process of experimental measurement takes longer periods, as it requires the incorporation of surveillance capsules into a PV system undergoing normal NPP operation. Therefore, strong reliance on computation and modeling of radiation-induced degradation is given much attention. In this work, the VENUS-3 benchmark has been analyzed using SuperMC code, with the intention of validating SuperMC for accurate reactor neutronics; dosimetry response calculations for in-core/ex-core structural components, particularly with respect to the VENUS-3 configuration type pressurized water reactors (PWRs). In this work, complete three-dimensional (3D) geometry including the source modeling for VENUS-3 facility has been developed with SuperMC. Neutron transport and calculations of equivalent fission flux for the experimental target quantities, 115In (n, n′), 58Ni (n, p), and 27Al (n, α), are also achieved. The calculation results show good agreement with the experimental measurement. The greater majority of the calculated values (C/E) were within the required accuracy of ±10% for reactor components' dosimetry calculations. Most of the calculated values were contained within 5% deviation from the experimental data. Additional calculations and detailed analysis for fast neutron flux distribution and iron displacement per atom rate (dpa/s), including the characteristic effect of partial length shielded assembly (PLSA) on VENUS-3 core barrel, are also discussed. It is therefore evidenced that the effectiveness of SuperMC code for in-core/ex-core reactor neutronics computations has been convincingly demonstrated through the VENUS-3 benchmark testing.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleVerification and Validation of SuperMC3.2 Using VENUS-3 Benchmark Experiments
    typeJournal Paper
    journal volume5
    journal issue4
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4043100
    journal fristpage41402
    journal lastpage041402-10
    treeJournal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian