YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Dump Tank Coolability in PHWRs During Late-Phase Severe Accident

    Source: Journal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 004::page 41601
    Author:
    Pandey, Pradeep
    ,
    Kulkarni, Parimal P.
    ,
    Nayak, Arun
    ,
    Prasad, Sumit V.
    DOI: 10.1115/1.4043108
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: In some of the older design of pressurized heavy water reactors (PHWRs), such as in Rajasthan Atomic Power Station (RAPS) and Madras Atomic Power Station (MAPS), in case of a severe accident, the debris/corium may cause failure of the dump port of calandria and relocate into the dump tank. The sensible and decay heat of debris/corium makes the heavy water in dump tank to boil off leaving the dry debris in dump tank. The dry debris remelt with time and the molten corium, thus, formed has the potential to breach the dump tank and move into the containment cavity, which is highly undesirable. Hence, as an accident management strategy, water is being flooded outside the dump tank using fire water hook-up lines to remove the heat from corium to cool and stabilize it and terminate the accident progression, similar to in vessel retention. However, the question is “is the molten corium coolable by this technique.” The coolability of the molten corium in dump tank as in the reactor is assessed by conducting experiments in a scaled facility using a simulant material having comparable thermophysical properties with that of corium. Melting of dry debris resting on dump tank bottom marks the beginning of the experimental investigation for present analysis. Decay heat is simulated by a set of immersed heaters inside the melt. Temperature profiles at different locations in dump tank and in the melt pool are obtained as a function of time to demonstrate the coolability with decay heat. Large temperature gradient is observed within the corium, involving high melt center temperature and low tank wall temperature suggesting formation of crust which insulates the dump tank wall from hot corium.
    • Download: (3.481Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Dump Tank Coolability in PHWRs During Late-Phase Severe Accident

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258923
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorPandey, Pradeep
    contributor authorKulkarni, Parimal P.
    contributor authorNayak, Arun
    contributor authorPrasad, Sumit V.
    date accessioned2019-09-18T09:06:23Z
    date available2019-09-18T09:06:23Z
    date copyright7/19/2019 12:00:00 AM
    date issued2019
    identifier issn2332-8983
    identifier otherners_005_04_041601
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258923
    description abstractIn some of the older design of pressurized heavy water reactors (PHWRs), such as in Rajasthan Atomic Power Station (RAPS) and Madras Atomic Power Station (MAPS), in case of a severe accident, the debris/corium may cause failure of the dump port of calandria and relocate into the dump tank. The sensible and decay heat of debris/corium makes the heavy water in dump tank to boil off leaving the dry debris in dump tank. The dry debris remelt with time and the molten corium, thus, formed has the potential to breach the dump tank and move into the containment cavity, which is highly undesirable. Hence, as an accident management strategy, water is being flooded outside the dump tank using fire water hook-up lines to remove the heat from corium to cool and stabilize it and terminate the accident progression, similar to in vessel retention. However, the question is “is the molten corium coolable by this technique.” The coolability of the molten corium in dump tank as in the reactor is assessed by conducting experiments in a scaled facility using a simulant material having comparable thermophysical properties with that of corium. Melting of dry debris resting on dump tank bottom marks the beginning of the experimental investigation for present analysis. Decay heat is simulated by a set of immersed heaters inside the melt. Temperature profiles at different locations in dump tank and in the melt pool are obtained as a function of time to demonstrate the coolability with decay heat. Large temperature gradient is observed within the corium, involving high melt center temperature and low tank wall temperature suggesting formation of crust which insulates the dump tank wall from hot corium.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleEvaluation of Dump Tank Coolability in PHWRs During Late-Phase Severe Accident
    typeJournal Paper
    journal volume5
    journal issue4
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4043108
    journal fristpage41601
    journal lastpage041601-8
    treeJournal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian