Show simple item record

contributor authorGuo, Yang
contributor authorMa, Hongbin
contributor authorFu, Benwei
contributor authorJi, Yulong
contributor authorSu, Fengmin
contributor authorWilson, Corey
date accessioned2019-09-18T09:06:21Z
date available2019-09-18T09:06:21Z
date copyright5/13/2019 12:00:00 AM
date issued2019
identifier issn1948-5085
identifier othertsea_11_5_051016
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258913
description abstractSeveral seawater desalination technologies have been developed and widely used during the last four decades. In the current investigation, a new approach to the seawater desalination process is presented, which utilizes microencapsulated phase change materials (MEPCMs) and thin film evaporation. In this process, the MEPCMs were placed into hot seawater. Then, the hot seawater and the MEPCMs containing the liquid phase change material (PCM) were ejected into a vacuum flash chamber. A thin liquid film of seawater was formed on the surface of the MEPCM, which subsequently vaporized. This evaporation significantly increased the evaporation heat transfer and enhanced the desalination efficiency. Film evaporation on MEPCM surfaces decreased their temperature by absorbing sensible heat. If their temperature was lower than the phase change temperature, the MEPCM would change phase from liquid to solid releasing the latent heat, resulting in further evaporation. The MEPCMs were then pumped back into the hot seawater, and the salt residue left on the MEPCMs could be readily dissolved. In this way, the desalination efficiency could be increased and corrosion reduced. A mathematical model was developed to determine the effects of MEPCM and thin film evaporation on desalination efficiency. An analytical solution using Lighthill's approach was obtained. Results showed that when MEPCMs with a radius of 100 µm and a water film of 50 µm were used, the evaporation rate and evaporative capacity were significantly increased.
publisherAmerican Society of Mechanical Engineers (ASME)
titleHeat Transfer Analysis of Flash Evaporation With MEPCM
typeJournal Paper
journal volume11
journal issue5
journal titleJournal of Thermal Science and Engineering Applications
identifier doi10.1115/1.4043089
journal fristpage51016
journal lastpage051016-10
treeJournal of Thermal Science and Engineering Applications:;2019:;volume( 011 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record