YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Suppressing Random Response of a Regular Structure by an Inerter-Based Dynamic Vibration Absorber

    Source: Journal of Vibration and Acoustics:;2019:;volume( 141 ):;issue: 004::page 41004
    Author:
    Jin, Xiaoling
    ,
    Chen, M. Z. Q.
    ,
    Huang, Zhilong
    DOI: 10.1115/1.4042934
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: This paper concentrates on the random vibration suppression of a regular straight beam by using an inerter-based dynamic vibration absorber. For a wideband random point-driven straight beam with an inerter-based dynamic vibration absorber, the distribution of mean-square velocity response along the axis of the straight beam as well as the mean kinetic energy of the whole beam are first analytically derived through the classical linear random vibration theory. Two optimization objectives are established to determine the optimal design parameters: (1) minimizing the maximal mean-square velocity along the axis of the straight beam, which corresponds to the maximal mean kinetic energy density along the axis and (2) minimizing the mean kinetic energy of the whole beam. Numerical search gives the optimal location and the associated optimal parameters of the inerter-based dynamic vibration absorber. Numerical results for a simply supported straight beam illustrate the better performance of an inerter-based dynamic vibration absorber than a traditional dynamic vibration absorber. Parametric sensitivity studies for the robustness analysis of the beam response to deviations from the optimal parameters are conducted. The optimal location locates on the force-excited point, while the suboptimal location locates on its symmetry position. Furthermore, the optimal and suboptimal locations remain invariable regardless of the upper cutoff frequency of band-limited noise, which is fairly important to the location optimization of the inerter-based dynamic vibration absorber.
    • Download: (1.078Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Suppressing Random Response of a Regular Structure by an Inerter-Based Dynamic Vibration Absorber

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258867
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorJin, Xiaoling
    contributor authorChen, M. Z. Q.
    contributor authorHuang, Zhilong
    date accessioned2019-09-18T09:06:05Z
    date available2019-09-18T09:06:05Z
    date copyright3/25/2019 12:00:00 AM
    date issued2019
    identifier issn1048-9002
    identifier othervib_141_4_041004
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258867
    description abstractThis paper concentrates on the random vibration suppression of a regular straight beam by using an inerter-based dynamic vibration absorber. For a wideband random point-driven straight beam with an inerter-based dynamic vibration absorber, the distribution of mean-square velocity response along the axis of the straight beam as well as the mean kinetic energy of the whole beam are first analytically derived through the classical linear random vibration theory. Two optimization objectives are established to determine the optimal design parameters: (1) minimizing the maximal mean-square velocity along the axis of the straight beam, which corresponds to the maximal mean kinetic energy density along the axis and (2) minimizing the mean kinetic energy of the whole beam. Numerical search gives the optimal location and the associated optimal parameters of the inerter-based dynamic vibration absorber. Numerical results for a simply supported straight beam illustrate the better performance of an inerter-based dynamic vibration absorber than a traditional dynamic vibration absorber. Parametric sensitivity studies for the robustness analysis of the beam response to deviations from the optimal parameters are conducted. The optimal location locates on the force-excited point, while the suboptimal location locates on its symmetry position. Furthermore, the optimal and suboptimal locations remain invariable regardless of the upper cutoff frequency of band-limited noise, which is fairly important to the location optimization of the inerter-based dynamic vibration absorber.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleSuppressing Random Response of a Regular Structure by an Inerter-Based Dynamic Vibration Absorber
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4042934
    journal fristpage41004
    journal lastpage041004-10
    treeJournal of Vibration and Acoustics:;2019:;volume( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian