YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Control Variate Multifidelity Estimators for the Variance and Sensitivity Analysis of Mesostructure–Structure Systems

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering:;2019:;volume( 005 ):;issue:002::page 20907
    Author:
    Xu, Hongyi
    ,
    Liu, Zhao
    DOI: 10.1115/1.4042835
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Variance and sensitivity analysis are challenging tasks when the evaluation of system performances incurs a high-computational cost. To resolve this issue, this paper investigates several multifidelity statistical estimators for the responses of complex systems, especially the mesostructure–structure system manufactured by additive manufacturing. First, this paper reviews an established control variate multifidelity estimator, which leverages the output of an inexpensive, low-fidelity model and the correlation between the high-fidelity model and the low-fidelity model to predict the statistics of the system responses. Second, we investigate several variants of the original estimator and propose a new formulation of the control variate estimator. All these estimators and the associated sensitivity analysis approaches are compared on two engineering examples of mesostructure–structure system analysis. A multifidelity metamodel-based sensitivity analysis approach is also included in the comparative study. The proposed estimator demonstrates its strength in predicting variance when only a limited number of expensive high-fidelity data are available. Finally, the pros and cons of each estimator are discussed, and recommendations are made on the selection of multifidelity estimators for variance and sensitivity analysis.
    • Download: (3.070Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Control Variate Multifidelity Estimators for the Variance and Sensitivity Analysis of Mesostructure–Structure Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258846
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorXu, Hongyi
    contributor authorLiu, Zhao
    date accessioned2019-09-18T09:05:58Z
    date available2019-09-18T09:05:58Z
    date copyright4/15/2019 12:00:00 AM
    date issued2019
    identifier issn2332-9017
    identifier otherrisk_005_02_020907
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258846
    description abstractVariance and sensitivity analysis are challenging tasks when the evaluation of system performances incurs a high-computational cost. To resolve this issue, this paper investigates several multifidelity statistical estimators for the responses of complex systems, especially the mesostructure–structure system manufactured by additive manufacturing. First, this paper reviews an established control variate multifidelity estimator, which leverages the output of an inexpensive, low-fidelity model and the correlation between the high-fidelity model and the low-fidelity model to predict the statistics of the system responses. Second, we investigate several variants of the original estimator and propose a new formulation of the control variate estimator. All these estimators and the associated sensitivity analysis approaches are compared on two engineering examples of mesostructure–structure system analysis. A multifidelity metamodel-based sensitivity analysis approach is also included in the comparative study. The proposed estimator demonstrates its strength in predicting variance when only a limited number of expensive high-fidelity data are available. Finally, the pros and cons of each estimator are discussed, and recommendations are made on the selection of multifidelity estimators for variance and sensitivity analysis.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleControl Variate Multifidelity Estimators for the Variance and Sensitivity Analysis of Mesostructure–Structure Systems
    typeJournal Paper
    journal volume5
    journal issue2
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    identifier doi10.1115/1.4042835
    journal fristpage20907
    journal lastpage020907-11
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering:;2019:;volume( 005 ):;issue:002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian