YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Roles of Nanofluids, Temperature of Base Fluids, and Pressure Gradient on Heat Transfer Enhancement From a Cylinder: Uniformly Heated/Heat Flux

    Source: Journal of Heat Transfer:;2019:;volume( 141 ):;issue: 006::page 62402
    Author:
    Maiti, Dilip K.
    ,
    Sharma, Swati
    DOI: 10.1115/1.4042840
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Heat transfer from a cylinder of square cross section (either dissipating constant heat flux (qW) or maintaining at a constant temperature (TW)) placed near a plane wall under the incidence of nonuniform linear/nonlinear velocity profile is studied numerically (finite volume method (FVM), quadratic upstream interpolation for convective kinematics (QUICK), and SIMPLE). The conventional fluids are chosen as water, and ethylene glycol–water mixture. The nanoparticles are selected as Al2O3 and CuO. Roles of pressure gradient P (at the inlet), temperature of base fluids, thermal conditions (TW or qW), and nanofluids' parameters (nanoparticle concentrations (ϕ), diameter, materials, and base fluids) on the heat transfer (Nusselt number (Nu¯M)) of the cylinder are investigated here. Nu¯M enhancement from the cylinder together with its drag coefficient reduction/increment due to addition of nanomaterials in both fluids at two different temperatures is assessed under the Couette flow. Classical fluid dynamics relationship among Nu¯M, Reynolds number (Re), and Prandtl number is discussed through Colburn j–factor, and hence the utility of proposed correlation between j–factor and Re toward engineering problems is also explored. The graphical observations of dependency of Nu¯M on the aforesaid parameters are reconfirmed by proposed functional forms of Nu¯M=Nu¯M(P), Nu¯M=Nu¯M(ϕ) and hence Nu¯M=Nu¯M(P,ϕ). An effort is made to examine the effectiveness of the aforementioned parameters on the heat transfer enhancement rate.
    • Download: (5.521Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Roles of Nanofluids, Temperature of Base Fluids, and Pressure Gradient on Heat Transfer Enhancement From a Cylinder: Uniformly Heated/Heat Flux

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258841
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorMaiti, Dilip K.
    contributor authorSharma, Swati
    date accessioned2019-09-18T09:05:57Z
    date available2019-09-18T09:05:57Z
    date copyright4/16/2019 12:00:00 AM
    date issued2019
    identifier issn0022-1481
    identifier otherht_141_06_062402
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258841
    description abstractHeat transfer from a cylinder of square cross section (either dissipating constant heat flux (qW) or maintaining at a constant temperature (TW)) placed near a plane wall under the incidence of nonuniform linear/nonlinear velocity profile is studied numerically (finite volume method (FVM), quadratic upstream interpolation for convective kinematics (QUICK), and SIMPLE). The conventional fluids are chosen as water, and ethylene glycol–water mixture. The nanoparticles are selected as Al2O3 and CuO. Roles of pressure gradient P (at the inlet), temperature of base fluids, thermal conditions (TW or qW), and nanofluids' parameters (nanoparticle concentrations (ϕ), diameter, materials, and base fluids) on the heat transfer (Nusselt number (Nu¯M)) of the cylinder are investigated here. Nu¯M enhancement from the cylinder together with its drag coefficient reduction/increment due to addition of nanomaterials in both fluids at two different temperatures is assessed under the Couette flow. Classical fluid dynamics relationship among Nu¯M, Reynolds number (Re), and Prandtl number is discussed through Colburn j–factor, and hence the utility of proposed correlation between j–factor and Re toward engineering problems is also explored. The graphical observations of dependency of Nu¯M on the aforesaid parameters are reconfirmed by proposed functional forms of Nu¯M=Nu¯M(P), Nu¯M=Nu¯M(ϕ) and hence Nu¯M=Nu¯M(P,ϕ). An effort is made to examine the effectiveness of the aforementioned parameters on the heat transfer enhancement rate.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleRoles of Nanofluids, Temperature of Base Fluids, and Pressure Gradient on Heat Transfer Enhancement From a Cylinder: Uniformly Heated/Heat Flux
    typeJournal Paper
    journal volume141
    journal issue6
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4042840
    journal fristpage62402
    journal lastpage062402-14
    treeJournal of Heat Transfer:;2019:;volume( 141 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian