YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Loss of Heat Sink for ITER Divertor Cooling System Using Modified RELAP/SCDAPSIM/MOD 4.0

    Source: Journal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 004::page 42202
    Author:
    Saraswat, S. P.
    ,
    Ray, D.
    ,
    Munshi, P.
    ,
    Allison, C.
    DOI: 10.1115/1.4042707
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: The present work includes thermal hydraulic modeling and analysis of loss of heat sink (LOHS) accident for the ITER divertor cooling system. The analysis is done for the new design of full tungsten divertor. The new design is also analyzed for different local heat loads ranging from 10 MW/m2 to 20 MW/m2 (while maintaining the total heat load 200 MW) under the steady-state fluid conditions. The LOHS event is selected since divertor is the most sensitive component to loss or reduction in coolability of divertor primary heat transport system (DV-PHTS) loop as it receives large heat flux from plasma. The main objective of this analysis is to find margins to unwanted conditions like overstress temperatures of structure and elevated water level in the pressurizer. The analysis is done by modified thermal hydraulic code RELAP/SCDAPSIM/MOD 4.0. The results obtained are compared with the results of old divertor design which uses carbon fiber composite (CFC) layer to show that how the new design of divertor behaves compared to the older design under the accident scenario. A detailed model of DV-PHTS loop and its ancillary system is presented. The model includes promotional integral differential (PID) controller for controlling the pressurizer heater and spray system. A detailed pump model is also included in the present analysis which was previously used as a time-dependent junction. The analysis shows that under the accident scenario, (a) the divertor structure temperature at the critical sites (inner vertical target (IVT) and outer vertical target (OVT)) is always within the design limit and does not affect the structural integrity of the divertor. (b) The water level in the pressurizer increases moderately and finely controlled by the PID controller, and pressurizer safety valve does not open.
    • Download: (2.545Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Loss of Heat Sink for ITER Divertor Cooling System Using Modified RELAP/SCDAPSIM/MOD 4.0

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258805
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorSaraswat, S. P.
    contributor authorRay, D.
    contributor authorMunshi, P.
    contributor authorAllison, C.
    date accessioned2019-09-18T09:05:47Z
    date available2019-09-18T09:05:47Z
    date copyright7/19/2019 12:00:00 AM
    date issued2019
    identifier issn2332-8983
    identifier otherners_005_04_042202
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258805
    description abstractThe present work includes thermal hydraulic modeling and analysis of loss of heat sink (LOHS) accident for the ITER divertor cooling system. The analysis is done for the new design of full tungsten divertor. The new design is also analyzed for different local heat loads ranging from 10 MW/m2 to 20 MW/m2 (while maintaining the total heat load 200 MW) under the steady-state fluid conditions. The LOHS event is selected since divertor is the most sensitive component to loss or reduction in coolability of divertor primary heat transport system (DV-PHTS) loop as it receives large heat flux from plasma. The main objective of this analysis is to find margins to unwanted conditions like overstress temperatures of structure and elevated water level in the pressurizer. The analysis is done by modified thermal hydraulic code RELAP/SCDAPSIM/MOD 4.0. The results obtained are compared with the results of old divertor design which uses carbon fiber composite (CFC) layer to show that how the new design of divertor behaves compared to the older design under the accident scenario. A detailed model of DV-PHTS loop and its ancillary system is presented. The model includes promotional integral differential (PID) controller for controlling the pressurizer heater and spray system. A detailed pump model is also included in the present analysis which was previously used as a time-dependent junction. The analysis shows that under the accident scenario, (a) the divertor structure temperature at the critical sites (inner vertical target (IVT) and outer vertical target (OVT)) is always within the design limit and does not affect the structural integrity of the divertor. (b) The water level in the pressurizer increases moderately and finely controlled by the PID controller, and pressurizer safety valve does not open.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleAnalysis of Loss of Heat Sink for ITER Divertor Cooling System Using Modified RELAP/SCDAPSIM/MOD 4.0
    typeJournal Paper
    journal volume5
    journal issue4
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4042707
    journal fristpage42202
    journal lastpage042202-8
    treeJournal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian