Show simple item record

contributor authorQiang, Wang
contributor authorZuoqin, Qian
contributor authorJunlin, Cheng
contributor authorJie, Ren
contributor authorWeilong, Huang
date accessioned2019-09-18T09:05:36Z
date available2019-09-18T09:05:36Z
date copyright7/22/2019 12:00:00 AM
date issued2019
identifier issn0022-1481
identifier otherht_141_09_091804
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258772
description abstractThe numerical simulation was carried out to investigate mechanism of the heat transfer enhancement in the fin-and-tube heat exchangers. As known, the vortex generators (VGs) were widely used to improve the thermal performance with bad flow resistance characteristics and led to bad comprehensive performance. This paper aims to expound the mechanism of thermal hydraulic characteristics and explore the effect of VGs position on the comprehensive performance. Three types of fins (type 1, type 2, and type 3) were discussed in this paper. The j factor, f factor, and performance evaluation (PEC) of three types of VGs in different positions were discussed and compared. Based on the numerical results, a detailed description of the effect of three types of VGs on the heat transfer performance and flow resistance characteristics was presented at different Reynolds number in the range between 1300 and 2000. In addition, local velocity distribution, local temperature distribution, and local pressure drop distribution were analyzed and discussed. And the effect of VG angle on the thermal performance and flow resistance was presented. It can be concluded that the main heat transfer occurred in the region before the tube, and the wake region behind the tube was harmful to improve the thermal performance and reduce the flow resistance. Besides, VG in the wake region was obviously beneficial to the enhancement of the thermal performance with less energy loss.
publisherAmerican Society of Mechanical Engineers (ASME)
titleInvestigation on Heat Transfer Performance and Flow Resistance Characteristics in Finned-Tube Heat Exchangers With Different Vortex Generator Positions
typeJournal Paper
journal volume141
journal issue9
journal titleJournal of Heat Transfer
identifier doi10.1115/1.4042008
journal fristpage91804
journal lastpage091804-10
treeJournal of Heat Transfer:;2019:;volume( 141 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record