YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Laminar Natural Convection Heat Transfer From Vertical 7 × 7 Rod Bundles in Liquid Sodium

    Source: Journal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 002::page 21002
    Author:
    Hata, Koichi
    ,
    Fukuda, Katsuya
    ,
    Mizuuchi, Tohru
    DOI: 10.1115/1.4042356
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Laminar natural convection heat transfer from vertical 7 × 7 rod bundle in liquid sodium was numerically analyzed to optimize the thermal–hydraulic design for the bundle geometry with equilateral square array (ESA). The unsteady laminar three-dimensional basic equations for natural convection heat transfer caused by a step heat flux were numerically solved until the solution reaches a steady-state. The code of the parabolic hyperbolic or elliptic numerical integration code series (PHOENICS) was used for the calculation considering the temperature dependence of thermophysical properties concerned. The 7 × 7 heated rods for diameter (D = 0.0076 m), length (L = 0.2 m) and L/D (=26.32) were used in this work. The surface heat fluxes for each cylinder, which was uniformly heated along the length, were equally given for a modified Rayleigh number, (Raf,L)ij and (Raf,L)Nx×Ny,S/D, ranging from 3.08 × 104 to 4.28 × 107 (q = 1 × 104∼7 × 106 W/m2) in liquid temperature (TL = 673.15 K). The values of ratio of the diagonal center-line distance between rods for bundle geometry to the rod diameter (S/D) for vertical 7 × 7 rod bundle were ranged from 1.8 to 6 on the bundle geometry with ESA. The spatial distribution of average Nusselt numbers for a vertical single cylinder of a rod bundle, (Nuav)ij, and average Nusselt numbers for a vertical rod bundle, (Nuav,B)Nx×Ny,S/D, were clarified. The average values of Nusselt number, (Nuav)ij and (Nuav,B)Nx×Ny,S/D, for the bundle geometry with various values of S/D were calculated to examine the effect of array size, bundle geometry, S/D, (Raf,L)ij and (Raf,L)Nx×Ny,S/D on heat transfer. The bundle geometry for the higher (Nuav,B)Nx×Ny,S/D value under the condition of S/D = constant was examined. The general correlations for natural convection heat transfer from a vertical Nx×Ny rod bundle with the ESA and equilateral triangle array (ETA), including the effects of array size, (Raf,L)Nx×Ny,S/D and S/D were derived. The correlations for vertical Nx×Ny rod bundles can describe the theoretical values of (Nuav,B)Nx×Ny,S/D for each bundle geometry in the wide analytical range of S/D (=1.8–6) and the modified Rayleigh number ((Raf,L)Nx×Ny,S/D = 3.08 × 104 to 4.28 × 107) within −9.49 to 10.6% differences.
    • Download: (4.710Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Laminar Natural Convection Heat Transfer From Vertical 7 × 7 Rod Bundles in Liquid Sodium

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258764
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorHata, Koichi
    contributor authorFukuda, Katsuya
    contributor authorMizuuchi, Tohru
    date accessioned2019-09-18T09:05:34Z
    date available2019-09-18T09:05:34Z
    date copyright3/15/2019 12:00:00 AM
    date issued2019
    identifier issn2332-8983
    identifier otherners_005_02_021002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258764
    description abstractLaminar natural convection heat transfer from vertical 7 × 7 rod bundle in liquid sodium was numerically analyzed to optimize the thermal–hydraulic design for the bundle geometry with equilateral square array (ESA). The unsteady laminar three-dimensional basic equations for natural convection heat transfer caused by a step heat flux were numerically solved until the solution reaches a steady-state. The code of the parabolic hyperbolic or elliptic numerical integration code series (PHOENICS) was used for the calculation considering the temperature dependence of thermophysical properties concerned. The 7 × 7 heated rods for diameter (D = 0.0076 m), length (L = 0.2 m) and L/D (=26.32) were used in this work. The surface heat fluxes for each cylinder, which was uniformly heated along the length, were equally given for a modified Rayleigh number, (Raf,L)ij and (Raf,L)Nx×Ny,S/D, ranging from 3.08 × 104 to 4.28 × 107 (q = 1 × 104∼7 × 106 W/m2) in liquid temperature (TL = 673.15 K). The values of ratio of the diagonal center-line distance between rods for bundle geometry to the rod diameter (S/D) for vertical 7 × 7 rod bundle were ranged from 1.8 to 6 on the bundle geometry with ESA. The spatial distribution of average Nusselt numbers for a vertical single cylinder of a rod bundle, (Nuav)ij, and average Nusselt numbers for a vertical rod bundle, (Nuav,B)Nx×Ny,S/D, were clarified. The average values of Nusselt number, (Nuav)ij and (Nuav,B)Nx×Ny,S/D, for the bundle geometry with various values of S/D were calculated to examine the effect of array size, bundle geometry, S/D, (Raf,L)ij and (Raf,L)Nx×Ny,S/D on heat transfer. The bundle geometry for the higher (Nuav,B)Nx×Ny,S/D value under the condition of S/D = constant was examined. The general correlations for natural convection heat transfer from a vertical Nx×Ny rod bundle with the ESA and equilateral triangle array (ETA), including the effects of array size, (Raf,L)Nx×Ny,S/D and S/D were derived. The correlations for vertical Nx×Ny rod bundles can describe the theoretical values of (Nuav,B)Nx×Ny,S/D for each bundle geometry in the wide analytical range of S/D (=1.8–6) and the modified Rayleigh number ((Raf,L)Nx×Ny,S/D = 3.08 × 104 to 4.28 × 107) within −9.49 to 10.6% differences.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleLaminar Natural Convection Heat Transfer From Vertical 7 × 7 Rod Bundles in Liquid Sodium
    typeJournal Paper
    journal volume5
    journal issue2
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4042356
    journal fristpage21002
    journal lastpage021002-15
    treeJournal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian