Laminar Natural Convection Heat Transfer From Vertical 7 × 7 Rod Bundles in Liquid SodiumSource: Journal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 002::page 21002DOI: 10.1115/1.4042356Publisher: American Society of Mechanical Engineers (ASME)
Abstract: Laminar natural convection heat transfer from vertical 7 × 7 rod bundle in liquid sodium was numerically analyzed to optimize the thermal–hydraulic design for the bundle geometry with equilateral square array (ESA). The unsteady laminar three-dimensional basic equations for natural convection heat transfer caused by a step heat flux were numerically solved until the solution reaches a steady-state. The code of the parabolic hyperbolic or elliptic numerical integration code series (PHOENICS) was used for the calculation considering the temperature dependence of thermophysical properties concerned. The 7 × 7 heated rods for diameter (D = 0.0076 m), length (L = 0.2 m) and L/D (=26.32) were used in this work. The surface heat fluxes for each cylinder, which was uniformly heated along the length, were equally given for a modified Rayleigh number, (Raf,L)ij and (Raf,L)Nx×Ny,S/D, ranging from 3.08 × 104 to 4.28 × 107 (q = 1 × 104∼7 × 106 W/m2) in liquid temperature (TL = 673.15 K). The values of ratio of the diagonal center-line distance between rods for bundle geometry to the rod diameter (S/D) for vertical 7 × 7 rod bundle were ranged from 1.8 to 6 on the bundle geometry with ESA. The spatial distribution of average Nusselt numbers for a vertical single cylinder of a rod bundle, (Nuav)ij, and average Nusselt numbers for a vertical rod bundle, (Nuav,B)Nx×Ny,S/D, were clarified. The average values of Nusselt number, (Nuav)ij and (Nuav,B)Nx×Ny,S/D, for the bundle geometry with various values of S/D were calculated to examine the effect of array size, bundle geometry, S/D, (Raf,L)ij and (Raf,L)Nx×Ny,S/D on heat transfer. The bundle geometry for the higher (Nuav,B)Nx×Ny,S/D value under the condition of S/D = constant was examined. The general correlations for natural convection heat transfer from a vertical Nx×Ny rod bundle with the ESA and equilateral triangle array (ETA), including the effects of array size, (Raf,L)Nx×Ny,S/D and S/D were derived. The correlations for vertical Nx×Ny rod bundles can describe the theoretical values of (Nuav,B)Nx×Ny,S/D for each bundle geometry in the wide analytical range of S/D (=1.8–6) and the modified Rayleigh number ((Raf,L)Nx×Ny,S/D = 3.08 × 104 to 4.28 × 107) within −9.49 to 10.6% differences.
|
Show full item record
| contributor author | Hata, Koichi | |
| contributor author | Fukuda, Katsuya | |
| contributor author | Mizuuchi, Tohru | |
| date accessioned | 2019-09-18T09:05:34Z | |
| date available | 2019-09-18T09:05:34Z | |
| date copyright | 3/15/2019 12:00:00 AM | |
| date issued | 2019 | |
| identifier issn | 2332-8983 | |
| identifier other | ners_005_02_021002.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4258764 | |
| description abstract | Laminar natural convection heat transfer from vertical 7 × 7 rod bundle in liquid sodium was numerically analyzed to optimize the thermal–hydraulic design for the bundle geometry with equilateral square array (ESA). The unsteady laminar three-dimensional basic equations for natural convection heat transfer caused by a step heat flux were numerically solved until the solution reaches a steady-state. The code of the parabolic hyperbolic or elliptic numerical integration code series (PHOENICS) was used for the calculation considering the temperature dependence of thermophysical properties concerned. The 7 × 7 heated rods for diameter (D = 0.0076 m), length (L = 0.2 m) and L/D (=26.32) were used in this work. The surface heat fluxes for each cylinder, which was uniformly heated along the length, were equally given for a modified Rayleigh number, (Raf,L)ij and (Raf,L)Nx×Ny,S/D, ranging from 3.08 × 104 to 4.28 × 107 (q = 1 × 104∼7 × 106 W/m2) in liquid temperature (TL = 673.15 K). The values of ratio of the diagonal center-line distance between rods for bundle geometry to the rod diameter (S/D) for vertical 7 × 7 rod bundle were ranged from 1.8 to 6 on the bundle geometry with ESA. The spatial distribution of average Nusselt numbers for a vertical single cylinder of a rod bundle, (Nuav)ij, and average Nusselt numbers for a vertical rod bundle, (Nuav,B)Nx×Ny,S/D, were clarified. The average values of Nusselt number, (Nuav)ij and (Nuav,B)Nx×Ny,S/D, for the bundle geometry with various values of S/D were calculated to examine the effect of array size, bundle geometry, S/D, (Raf,L)ij and (Raf,L)Nx×Ny,S/D on heat transfer. The bundle geometry for the higher (Nuav,B)Nx×Ny,S/D value under the condition of S/D = constant was examined. The general correlations for natural convection heat transfer from a vertical Nx×Ny rod bundle with the ESA and equilateral triangle array (ETA), including the effects of array size, (Raf,L)Nx×Ny,S/D and S/D were derived. The correlations for vertical Nx×Ny rod bundles can describe the theoretical values of (Nuav,B)Nx×Ny,S/D for each bundle geometry in the wide analytical range of S/D (=1.8–6) and the modified Rayleigh number ((Raf,L)Nx×Ny,S/D = 3.08 × 104 to 4.28 × 107) within −9.49 to 10.6% differences. | |
| publisher | American Society of Mechanical Engineers (ASME) | |
| title | Laminar Natural Convection Heat Transfer From Vertical 7 × 7 Rod Bundles in Liquid Sodium | |
| type | Journal Paper | |
| journal volume | 5 | |
| journal issue | 2 | |
| journal title | Journal of Nuclear Engineering and Radiation Science | |
| identifier doi | 10.1115/1.4042356 | |
| journal fristpage | 21002 | |
| journal lastpage | 021002-15 | |
| tree | Journal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 002 | |
| contenttype | Fulltext |